首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molybdenum cofactor (Moco) biosynthesis is an evolutionarily conserved pathway in archaea, eubacteria, and eukaryotes, including humans. Genetic deficiencies of enzymes involved in this biosynthetic pathway trigger an autosomal recessive disease with severe neurological symptoms, which usually leads to death in early childhood. The MogA protein exhibits affinity for molybdopterin, the organic component of Moco, and has been proposed to act as a molybdochelatase incorporating molybdenum into Moco. MogA is related to the protein gephyrin, which, in addition to its role in Moco biosynthesis, is also responsible for anchoring glycinergic receptors to the cytoskeleton at inhibitory synapses. The high resolution crystal structure of the Escherichia coli MogA protein has been determined, and it reveals a trimeric arrangement in which each monomer contains a central, mostly parallel beta-sheet surrounded by alpha-helices on either side. Based on structural and biochemical data, a putative active site was identified, including two residues that are essential for the catalytic mechanism.  相似文献   

2.
The molybdenum cofactor (Moco) consists of a unique and conserved pterin derivative, usually referred to as molybdopterin (MPT), which coordinates the essential transition metal molybdenum (Mo). Moco is required for the enzymatic activities of all Mo-enzymes, with the exception of nitrogenase and is synthesized by an evolutionary old multi-step pathway that is dependent on the activities of at least six gene products. In eukaryotes, the final step of Moco biosynthesis, i.e. transfer and insertion of Mo into MPT, is catalyzed by the two-domain proteins Cnx1 in plants and gephyrin in mammals. Gephyrin is ubiquitously expressed, and was initially found in the central nervous system, where it is essential for clustering of inhibitory neuroreceptors in the postsynaptic membrane. Gephyrin and Cnx1 contain at least two functional domains (E and G) that are homologous to the Escherichia coli proteins MoeA and MogA, the atomic structures of which have been solved recently. Here, we present the crystal structures of the N-terminal human gephyrin G domain (Geph-G) and the C-terminal Arabidopsis thaliana Cnx1 G domain (Cnx1-G) at 1.7 and 2.6 A resolution, respectively. These structures are highly similar and compared to MogA reveal four major differences in their three-dimensional structures: (1) In Geph-G and Cnx1-G an additional alpha-helix is present between the first beta-strand and alpha-helix of MogA. (2) The loop between alpha 2 and beta 2 undergoes conformational changes in all three structures. (3) A beta-hairpin loop found in MogA is absent from Geph-G and Cnx1-G. (4) The C terminus of Geph-G follows a different path from that in MogA. Based on the structures of the eukaryotic proteins and their comparisons with E. coli MogA, the predicted binding site for MPT has been further refined. In addition, the characterized alternative splice variants of gephyrin are analyzed in the context of the three-dimensional structure of Geph-G.  相似文献   

3.
The molybdenum co-factor (Moco) is an essential part of all eukaryotic molybdoenzymes. It is a molybdopterin and reveals the same principal structure in eubacteria, archaebacteria and eukaryotes. This paper reports the isolation of cnx1 , a cDNA clone of Arabidopsis thaliana which complements the Escherichia coli Moco mutant mogA . The mapping data of this cDNA correlate well with the mapping position of the A. thaliana molybdenum cofactor locus chl6 . As mutants in chl6 are known to be repairable by high concentrations of molybdate, the defective gene is very likely to be involved in the last step of Moco biosynthesis, that is, the insertion of molybdenum into molybdopterin. The protein encoded by cnx1 shows a two-domain structure: the N-terminal domain is homologous to the E. coli Moco protein MoeA, the C-terminal domain is homologous to the E. coli Moco proteins MoaB and MogA, respectively. These homologies show that part of the prokaryotic Moco biosynthetic pathway accomplished by monofunctional proteins in E. coli , is performed by a single multifunctional protein in eukaryotes. In addition Cnx1 is homologous to the eukaryotic proteins Gephyrin, a rat neuroprotein, and Cinnamon, a Drosophila protein with a function in Moco biosynthesis. These proteins also show a two-domain structure but the order of the domains is inversed as compared with Cnx1. Southern analysis indicates the existence of at least one further member, in addition to the cnx1 gene, of this novel gene family in the Arabidopsis genome.  相似文献   

4.
The molybdenum cofactor is ubiquitous in nature, and the pathway for Moco biosynthesis is conserved in all three domains of life. Recent work has helped to illuminate one of the most enigmatic steps in Moco biosynthesis, ligation of metal to molybdopterin (the organic component of the cofactor) to form the active cofactor. In Escherichia coli, the MoeA protein mediates ligation of Mo to molybdopterin while the MogA protein enhances this process in an ATP-dependent manner. The X-ray crystal structures for both proteins have been previously described as well as two essential MogA residues, Asp49 and Asp82. Here we describe a detailed mutational analysis of the MoeA protein. Variants of conserved residues at the putative active site of MoeA were analyzed for a loss of function in two different, previously described assays, one employing moeA- crude extracts and the other utilizing a defined system. Oddly, no correlation was observed between the activity in the two assays. In fact, our results showed a general trend toward an inverse relationship between the activity in each assay. Moco binding studies indicated a strong correlation between a variant's ability to bind Moco and its activity in the purified component assay. Crystal structures of the functionally characterized MoeA variants revealed no major structural changes, indicating that the functional differences observed are not due to disruption of the protein structure. On the basis of these results, two different functional areas were assigned to regions at or near the MoeA active site cleft.  相似文献   

5.
Gephyrin is a ubiquitously expressed protein that, in the central nervous system, forms a submembraneous scaffold for anchoring inhibitory neurotransmitter receptors in the postsynaptic membrane. The N- and C-terminal domains of gephyrin are homologous to the Escherichia coli enzymes MogA and MoeA, respectively, both of which are involved in molybdenum cofactor biosynthesis. This enzymatic pathway is highly conserved from bacteria to mammals, as underlined by the ability of gephyrin to rescue molybdenum cofactor deficiencies in different organisms. Here we report the x-ray crystal structure of the N-terminal domain (amino acids 2-188) of rat gephyrin at 1.9-A resolution. Gephyrin-(2-188) forms trimers in solution, and a sequence motif thought to be involved in molybdopterin binding is highly conserved between gephyrin and the E. coli protein. The atomic structure of gephyrin-(2-188) resembles MogA, albeit with two major differences. The path of the C-terminal ends of gephyrin-(2-188) indicates that the central and C-terminal domains, absent in this structure, should follow a similar 3-fold arrangement as the N-terminal region. In addition, a central beta-hairpin loop found in MogA is lacking in gephyrin-(2-188). Despite these differences, both structures show a high degree of surface charge conservation, which is consistent with their common catalytic function.  相似文献   

6.
The crystal structure of Escherichia coli MoaB was determined by multiwavelength anomalous diffraction phasing and refined at 1.6-A resolution. The molecule displayed a modified Rossman fold. MoaB is assembled into a hexamer composed of two trimers. The monomers have high structural similarity with two proteins, MogA and MoeA, from the molybdenum cofactor synthesis pathway in E. coli, as well as with domains of mammalian gephyrin and plant Cnx1, which are also involved in molybdopterin synthesis. Structural comparison between these proteins and the amino acid conservation patterns revealed a putative active site in MoaB. The structural analysis of this site allowed to advance several hypothesis that can be tested in further studies.  相似文献   

7.
The final stages of bacterial molybdenum cofactor (Moco) biosynthesis correspond to molybdenum chelation and nucleotide attachment onto an unique and ubiquitous structure, the molybdopterin. Using a bacterial two-hybrid approach, here we report on the in vivo interactions between MogA, MoeA, MobA, and MobB implicated in several distinct although linked steps in Escherichia coli. Numerous interactions among these proteins have been identified. Somewhat surprisingly, MobB, a GTPase with a yet unclear function, interacts with MogA, MoeA, and MobA. Probing the effects of various mo. mutations on the interaction map allowed us (i) to distinguish Moco-sensitive interactants from insensitive ones involving MobB and (ii) to demonstrate that molybdopterin is a key molecule triggering or facilitating MogA-MoeA and MoeA-MobA interactions. These results suggest that, in vivo, molybdenum cofactor biosynthesis occurs on protein complexes rather than by the separate action of molybdenum cofactor biosynthetic proteins.  相似文献   

8.
MoeA is involved in synthesis of the molybdopterin cofactor, although its function is not yet clearly defined. The three-dimensional structure of the Escherichia coli protein was solved at 2.2 A resolution. The locations of highly conserved residues among the prokaryotic and eukaryotic MoeA homologs identifies a cleft in the dimer interface as the likely functional site. Of the four domains of MoeA, domain 2 displays a novel fold and domains 1 and 4 each have only one known structural homolog. Domain 3, in contrast, is structurally similar to many other proteins. The protein that resembles domain 3 most closely is MogA, another protein required for molybdopterin cofactor synthesis. The overall similarity between MoeA and MogA, and the similarities in a constellation of residues that are strongly conserved in MoeA, suggests that these proteins bind similar ligands or substrates and may have similar functions.  相似文献   

9.
The molybdenum cofactor (Moco) exists in different variants in the cell and can be directly inserted into molybdoenzymes utilizing the molybdopterin (MPT) form of Moco. In bacteria such as Rhodobacter capsulatus and Escherichia coli, MPT is further modified by attachment of a GMP nucleotide, forming MPT guanine dinucleotide (MGD). In this work, we analyzed the distribution and targeting of different forms of Moco to their respective user enzymes by proteins that bind Moco and are involved in its further modification. The R. capsulatus proteins MogA, MoeA, MobA, and XdhC were purified, and their specific interactions were analyzed. Interactions between the protein pairs MogA-MoeA, MoeA-XdhC, MoeA-MobA, and XdhC-MobA were identified by surface plasmon resonance measurements. In addition, the transfer of Moco produced by the MogA-MoeA complex to XdhC was investigated. A direct competition of MobA and XdhC for Moco binding was determined. In vitro analyses showed that XdhC bound to MobA, prevented the binding of Moco to MobA, and thereby inhibited MGD biosynthesis. The data were confirmed by in vivo studies in R. capsulatus cells showing that overproduction of XdhC resulted in a 50% decrease in the activity of bis-MGD-containing Me(2)SO reductase. We propose that, in bacteria, the distribution of Moco in the cell and targeting to the respective user enzymes are accomplished by specific proteins involved in Moco binding and modification.  相似文献   

10.
Escherichia coli MoeA and MogA are required for molybdenum cofactor biosynthesis and are believed to function in the addition of molybdenum to the dithiolene of molybdopterin to form molybdenum cofactor. Here we show that moeA(-) and mogA(-) cells are able to synthesize molybdopterin, but both are deficient in molybdenum incorporation and, as a consequence, are deficient in the formation of molybdopterin-guanine dinucleotide. Human sulfite oxidase expressed in E. coli moeA(-) could be activated in vitro in the presence of MoeA and low concentrations of molybdate. Sulfite oxidase purified from the moeA(-) lysate was also activated, although to a lesser extent than observed in the presence of lysate. MogA was incapable of activating sulfite oxidase expressed in E. coli mogA(-). These results demonstrate that molybdenum insertion into molybdopterin is required for molybdopterin-guanine dinucleotide formation, and that MoeA facilitates molybdenum incorporation at low levels of molybdate, but MogA has an alternative function, possibly as a carrier for molybdopterin during molybdenum incorporation.  相似文献   

11.
12.
We have previously shown that Escherichia coli MoeA and MogA are required in vivo for the final step of molybdenum cofactor biosynthesis, the addition of the molybdenum atom to the dithiolene of molybdopterin. MoeA was also shown to facilitate the addition of molybdenum in an assay using crude extracts from E. coli moeA(-) cells. The experiments detailed in this report utilized an in vitro assay for MoeA-mediated molybdenum ligation to de novo synthesized molybdopterin using only purified components and monitoring the reconstitution of human aposulfite oxidase. In this assay, maximum activation was achieved by delaying the addition of aposulfite oxidase to allow for adequate molybdenum coordination to occur. Tungsten, which substitutes for molybdenum in hyperthermophilic organisms, could also be ligated to molybdopterin using this system, though not as efficiently as molybdenum. Addition of thiol compounds to the assay inhibited activity. Addition of MogA also inhibited the reaction. However, in the presence of ATP and magnesium, addition of MogA to the assay increased the level of aposulfite oxidase reconstitution beyond that observed with MoeA alone. This effect was not observed in the absence of MoeA. The results presented here demonstrate that MoeA is responsible for mediating molybdenum ligation to molybdopterin, whereas MogA stimulates this activity in an ATP-dependent manner.  相似文献   

13.
14.
Molybdenum (Mo) is a very scarce element whose function is fundamental in living beings within the active site of Mo-oxidoreductases, playing key roles in the metabolism of N, S, purines, hormone biosynthesis, transformation of drugs and xenobiotics, etc. In eukaryotes, each step from Mo acquisition until its incorporation into a biologically active molybdenum cofactor (Moco) together with the assembly of this Moco in Mo-enzymes is almost understood. The deficiency in function of a particular molybdoenzyme can be critical for the survival of the organism dependent on the pathway involved. However, incapacity in forming a functional Moco has a pleiotropic effect in the different processes involving this cofactor. A detailed overview of Mo metabolism: (a) specific transporters for molybdate, (b) the universal biosynthesis pathway for Moco from GTP, (c) Moco-carrier and Moco-binding proteins for Moco transfer and (d) Mo-enzymes, is analyzed in light of recent findings and three systems are compared, the unicellular microalga Chlamydomonas, the plant Arabidopsis and humans.  相似文献   

15.
BACKGROUND: The molybdenum cofactor (Moco) is an essential component of a large family of enzymes involved in important transformations in carbon, nitrogen and sulfur metabolism. The Moco biosynthetic pathway is evolutionarily conserved and found in archaea, eubacteria and eukaryotes. In humans, genetic deficiencies of enzymes involved in this pathway trigger an autosomal recessive and usually deadly disease with severe neurological symptoms. The MoaC protein, together with the MoaA protein, is involved in the first step of Moco biosynthesis. RESULTS: MoaC from Escherichia coli has been expressed and purified to homogeneity and its crystal structure determined at 2 A resolution. The enzyme is organized into a tightly packed hexamer with 32 symmetry. The monomer consists of an antiparallel, four-stranded beta sheet packed against two long alpha helices, and its fold belongs to the ferredoxin-like family. Analysis of structural and biochemical data strongly suggests that the active site is located at the interface of two monomers in a pocket that contains several strictly conserved residues. CONCLUSIONS: Asp128 in the putative active site appears to be important for catalysis as its replacement with alanine almost completely abolishes protein activity. The structure of the Asp128-->Ala variant reveals substantial conformational changes in an adjacent loop. In the human MoaC ortholog, substitution of Thr182 with proline causes Moco deficiency, and the corresponding substitution in MoaC severely compromises activity. This residue is located near the N-terminal end of helix alpha4 at an interface between two monomers. The MoaC structure provides a framework for the analysis of additional dysfunctional mutations in the corresponding human gene.  相似文献   

16.
17.
Splice-specific functions of gephyrin in molybdenum cofactor biosynthesis   总被引:1,自引:0,他引:1  
Gephyrin is a multifunctional protein involved in the clustering of inhibitory neuroreceptors. In addition, gephyrin catalyzes the last step in molybdenum cofactor (Moco) biosynthesis essential for the activities of Mo-dependent enzymes such as sulfite oxidase and xanthine oxidoreductase. Functional complexity and diversity of gephyrin is believed to be regulated by alternative splicing in a tissue-specific manner. Here, we investigated eight gephyrin variants with combinations of seven alternatively spliced exons located in the N-terminal G domain, the central domain, and the C-terminal E domain. Their activity in Moco synthesis was analyzed in vivo by reconstitution of gephyrin-deficient L929 cells, which were found to be defective in the G domain of gephyrin. Individual domain functions were assayed in addition and confirmed that variants containing either an additional C5 cassette or missing the C6 cassette are inactive in Moco synthesis. In contrast, different alterations within the central domain retained the Moco synthetic activity of gephyrin. The recombinant gephyrin G domain containing the C5 cassette forms dimers in solution, binds molybdopterin, but is unable to catalyze molybdopterin (MPT) adenylylation. Determination of Moco and MPT content in different tissues showed that besides liver and kidney, brain was capable of synthesizing Moco most efficiently. Subsequent analysis of cultured neurons and glia cells demonstrated glial Moco synthesis due to the expression of gephyrins containing the cassettes C2 and C6 with and without C3.1.  相似文献   

18.
Molybdenum insertion into the dithiolene group on the 6-alkyl side-chain of molybdopterin is a highly specific process that is catalysed by the MoeA and MogA proteins in Escherichia coli. Ligation of molybdate to molybdopterin generates the molybdenum cofactor, which can be inserted directly into molybdoenzymes binding the molybdopterin form of the molybdenum cofactor, or is further modified in bacteria to form the dinucleotide form of the molybdenum cofactor. The ability of various metals to bind tightly to sulfur-rich sites raised the question of whether other metal ions could be inserted in place of molybdenum at the dithiolene moiety of molybdopterin in molybdoenzymes. We used the heterologous expression systems of human sulfite oxidase and Rhodobacter sphaeroides dimethylsulfoxide reductase in E. coli to study the incorporation of different metal ions into the molybdopterin site of these enzymes. From the added metal-containing compounds Na(2)MoO(4), Na(2)WO(4), NaVO(3), Cu(NO(3))(2), CdSO(4) and NaAsO(2) during the growth of E. coli, only molybdate and tungstate were specifically inserted into sulfite oxidase and dimethylsulfoxide reductase. Other metals, such as copper, cadmium and arsenite, were nonspecifically inserted into sulfite oxidase, but not into dimethylsulfoxide reductase. We showed that metal insertion into molybdopterin occurs beyond the step of molybdopterin synthase and is independent of MoeA and MogA proteins. Our study shows that the activity of molybdoenzymes, such as sulfite oxidase, is inhibited by high concentrations of heavy metals in the cell, which will help to further the understanding of metal toxicity in E. coli.  相似文献   

19.
Gephyrin mediates the postsynaptic clustering of glycine receptors (GlyRs) and GABAA receptors at inhibitory synapses and molybdenum-dependent enzyme (molybdoenzyme) activity in non-neuronal tissues. Gephyrin knock-out mice show a phenotype resembling both defective glycinergic transmission and molybdenum cofactor (Moco) deficiency and die within 1 day of birth due to starvation and dyspnea resulting from deficits in motor and respiratory networks, respectively. To address whether gephyrin function is conserved among vertebrates and whether gephyrin deficiency affects molybdoenzyme activity and motor development, we cloned and characterized zebrafish gephyrin genes. We report here that zebrafish have two gephyrin genes, gphna and gphnb. The former is expressed in all tissues and has both C3 and C4 cassette exons, and the latter is expressed predominantly in the brain and spinal cord and harbors only C4 cassette exons. We confirmed that all of the gphna and gphnb splicing isoforms have Moco synthetic activity. Antisense morpholino knockdown of either gphna or gphnb alone did not disturb synaptic clusters of GlyRs in the spinal cord and did not affect touch-evoked escape behaviors. However, on knockdown of both gphna and gphnb, embryos showed impairments in GlyR clustering in the spinal cord and, as a consequence, demonstrated touch-evoked startle response behavior by contracting antagonistic muscles simultaneously, instead of displaying early coiling and late swimming behaviors, which are executed by side-to-side muscle contractions. These data indicate that duplicated gephyrin genes mediate Moco biosynthesis and control postsynaptic clustering of GlyRs, thereby mediating key escape behaviors in zebrafish.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号