首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The Fanconi anemia (FA) pathway plays a central role in the repair of DNA interstrand crosslinks (ICLs) and regulates cellular responses to replication stress. Homologous recombination (HR), the error‐free pathway for double‐strand break (DSB) repair, is required during physiological cell cycle progression for the repair of replication‐associated DNA damage and protection of stalled replication forks. Substantial crosstalk between the two pathways has recently been unravelled, in that key HR proteins such as the RAD51 recombinase and the tumour suppressors BRCA1 and BRCA2 also play important roles in ICL repair. Consistent with this, rare patient mutations in these HR genes cause FA pathologies and have been assigned FA complementation groups. Here, we focus on the clinical and mechanistic implications of the connection between these two cancer susceptibility syndromes and on how these two molecular pathways of DNA replication and repair interact functionally to prevent genomic instability.  相似文献   

2.
Cdc7 (cell division cycle 7) kinase together with its activation subunit ASK (also known as Dbf4) play pivotal roles in DNA replication and contribute also to other aspects of DNA metabolism such as DNA repair and recombination. While the biological significance of Cdc7 is widely appreciated, the molecular mechanisms through which Cdc7 kinase regulates these various DNA transactions remain largely obscure, including the role of Cdc7-ASK/Dbf4 under replication stress, a condition associated with diverse (patho)physiological scenarios. In this review, we first highlight the recent findings on a novel pathway that regulates the stability of the human Cdc7-ASK/Dbf4 complex under replication stress, its interplay with ATR-Chk1 signaling, and significance in the RAD18-dependent DNA damage bypass pathway. We also consider Cdc7 function in a broader context, considering both physiological conditions and pathologies associated with enhanced replication stress, particularly oncogenic transformation and tumorigenesis. Furthermore, we integrate the emerging evidence and propose a concept of Cdc7-ASK/Dbf4 contributing to genome integrity maintenance, through interplay with RAD18 that can serve as a molecular switch to dictate DNA repair pathway choice. Finally, we discuss the possibility of targeting Cdc7, particularly in the context of the Cdc7/RAD18-dependent translesion synthesis, as a potential innovative strategy for treatment of cancer.  相似文献   

3.
The DNA damage response triggers cell-cycle checkpoints, DNA repair and apoptosis using multiple post-translational modifications as molecular switches. However, how ubiquitination regulates ATR signaling in response to replication stress and single-strand break is still unclear. Here, we identified the deubiquitination enzyme (DUB) USP20 as a pivotal regulator of ATR-related DDR pathway. Through screening a panel of DUBs, we identified USP20 as critical for replication stress response. USP20 is phosphorylated by ATR, resulting in disassociation of the E3 ubiquitin ligase HERC2 from USP20 and USP20 stabilization. USP20 in turn deubiquitinates and stabilizes Claspin and enhances the activation of ATR-Chk1 signaling. These findings reveal USP20 to be a novel regulator of ATR-dependent DNA damage signaling.  相似文献   

4.
Proper activation of DNA repair pathways in response to DNA replication stress is critical for maintaining genomic integrity. Due to the complex nature of the replication fork (RF), problems at the RF require multiple proteins, some of which remain unidentified, for resolution. In this study, we identified the N-methyl-D-aspartate receptor synaptonuclear signaling and neuronal migration factor (NSMF) as a key replication stress response factor that is important for ataxia telangiectasia and Rad3-related protein (ATR) activation. NSMF localizes rapidly to stalled RFs and acts as a scaffold to modulate replication protein A (RPA) complex formation with cell division cycle 5-like (CDC5L) and ATR/ATR-interacting protein (ATRIP). Depletion of NSMF compromised phosphorylation and ubiquitination of RPA2 and the ATR signaling cascade, resulting in genomic instability at RFs under DNA replication stress. Consistently, NSMF knockout mice exhibited increased genomic instability and hypersensitivity to genotoxic stress. NSMF deficiency in human and mouse cells also caused increased chromosomal instability. Collectively, these findings demonstrate that NSMF regulates the ATR pathway and the replication stress response network for genome maintenance and cell survival.  相似文献   

5.
FANCM is a highly conserved DNA remodeling enzyme that promotes the activation of the Fanconi anemia DNA repair pathway and facilitates replication traverse of DNA interstrand crosslinks. However, how FANCM interacts with the replication machinery to promote traverse remains unclear. Here, we show that FANCM and its archaeal homolog Hef from Thermoplasma acidophilum interact with proliferating cell nuclear antigen (PCNA), an essential co-factor for DNA polymerases in both replication and repair. The interaction is mediated through a conserved PIP-box; and in human FANCM, it is strongly stimulated by replication stress. A FANCM variant carrying a mutation in the PIP-box is defective in promoting replication traverse of interstrand crosslinks and is also inefficient in promoting FANCD2 monoubiquitination, a key step of the Fanconi anemia pathway. Our data reveal a conserved interaction mode between FANCM and PCNA during replication stress, and suggest that this interaction is essential for FANCM to aid replication machines to traverse DNA interstrand crosslinks prior to post-replication repair.  相似文献   

6.
In eukaryotic chromosomes, DNA replication initiates at multiple origins. Large inter-origin gaps arise when several adjacent origins fail to fire. Little is known about how cells cope with this situation. We created a derivative of Saccharomyces cerevisiae chromosome III lacking all efficient origins, the 5ORIΔ-ΔR fragment, as a model for chromosomes with large inter-origin gaps. We used this construct in a modified synthetic genetic array screen to identify genes whose products facilitate replication of long inter-origin gaps. Genes identified are enriched in components of the DNA damage and replication stress signaling pathways. Mrc1p is activated by replication stress and mediates transduction of the replication stress signal to downstream proteins; however, the response-defective mrc1(AQ) allele did not affect 5ORIΔ-ΔR fragment maintenance, indicating that this pathway does not contribute to its stability. Deletions of genes encoding the DNA-damage-specific mediator, Rad9p, and several components shared between the two signaling pathways preferentially destabilized the 5ORIΔ-ΔR fragment, implicating the DNA damage response pathway in its maintenance. We found unexpected differences between contributions of components of the DNA damage response pathway to maintenance of ORIΔ chromosome derivatives and their contributions to DNA repair. Of the effector kinases encoded by RAD53 and CHK1, Chk1p appears to be more important in wild-type cells for reducing chromosomal instability caused by origin depletion, while Rad53p becomes important in the absence of Chk1p. In contrast, RAD53 plays a more important role than CHK1 in cell survival and replication fork stability following treatment with DNA damaging agents and hydroxyurea. Maintenance of ORIΔ chromosomes does not depend on homologous recombination. These observations suggest that a DNA-damage-independent mechanism enhances ORIΔ chromosome stability. Thus, components of the DNA damage response pathway contribute to genome stability, not simply by detecting and responding to DNA template damage, but also by facilitating replication of large inter-origin gaps.  相似文献   

7.
The correct execution of the DNA replication process is crucially import for the maintenance of genome integrity of the cell. Several types of sources, both endogenous and exogenous, can give rise to DNA damage leading to the DNA replication fork arrest. The processes by which replication blockage is sensed by checkpoint sensors and how the pathway leading to resolution of stalled forks is activated are still not completely understood. However, recent emerging evidence suggests that one candidate for a sensor of replication stress is ATR and that, together with a member of RecQ family helicases, Werner syndrome protein (WRN) and MRE11 complex, can collaborate to promote the restarting of DNA synthesis through the resolution of stalled replication forks. Here, we discuss how WRN, the MRE11 complex and the ATR kinase could work together in response to replication blockage to avoid DNA replication fork collapse and genome instability.  相似文献   

8.
If cells are treated with DNA damaging agents or inhibitors that interfere with ongoing DNA replication, the intra-S and S/M checkpoints delay progression through S phase and mitotic entry, respectively, to allow time for DNA repair and replication restart. In vertebrates, these checkpoint responses to replication blocks are largely mediated by the sensor kinase ATR and its major downstream effector kinase Chk1. Increasing evidence suggests that the ATR pathway is also vital in the absence of exogenous stresses, i.e. during “unperturbed” replication. Both ATR and Chk1 are essential proteins in vertebrates, and lack of components of the ATR/Chk1 pathway can result in impaired replication and spontaneous DNA damage. Here we give an overview of how the ATR/Chk1 pathway responds to exogenously blocked replication and then describe evidence for roles of this pathway during replication in an unperturbed S phase.  相似文献   

9.
10.
A paramount objective of the eukaryotic cell division cycle is to overcome numerous internal and external insults to faithfully duplicate the genetic information once per every cycle. This is carried out by elaborate networks of genome surveillance signaling pathways, termed replication checkpoints. Central to replication checkpoints are two protein kinases, the upstream kinase ATR, and its downstream target kinase, Chk1. When the DNA replication process is interrupted, the ATR-Chk1 pathway transmits signals to delay cell cycle progression, and to maintain fork viability so that DNA duplication can resume after the initial damage is corrected. Previous studies showed that replicative stress not only activated Chk1, but also triggered the ubiquitin-dependent destruction of Chk1 in cultured human cells. In a recent study, we identified the F-box protein, Fbx6, as the mediator that regulates Chk1 ubiquitination and degradation in both normally cycling cells and during replication stress. We further showed that expression levels of Chk1 and Fbx6 exhibited an overall inverse correlation in both cultured cancer cell lines and in breast tumor tissues, and that defects in Chk1 degradation, for instance, due to reduced expression of Fbx6, rendered tumor cells resistant to anticancer treatment. Here we highlight those findings and their implications in the replication checkpoint and cellular sensitivity to cancer therapies.  相似文献   

11.
DNA damage tolerance (DDT) mechanisms facilitate replication resumption and completion when DNA replication is blocked by bulky DNA lesions. In budding yeast, template switching (TS) via the Rad18/Rad5 pathway is a favored DDT pathway that involves usage of the sister chromatid as a template to bypass DNA lesions in an error‐free recombination‐like process. Here, we establish that the Snf2 family translocase Irc5 is a novel factor that promotes TS and averts single‐stranded DNA persistence during replication. We demonstrate that, during replication stress, Irc5 enables replication progression by assisting enrichment of cohesin complexes, recruited in an Scc2/Scc4‐dependent fashion, near blocked replication forks. This allows efficient formation of sister chromatid junctions that are crucial for error‐free DNA lesion bypass. Our results support the notion of a key role of cohesin in the completion of DNA synthesis under replication stress and reveal that the Rad18/Rad5‐mediated DDT pathway is linked to cohesin enrichment at sites of perturbed replication via the Snf2 family translocase Irc5.  相似文献   

12.
The replisome is important for DNA replication checkpoint activation, but how specific components of the replisome coordinate with ATR to activate Chk1 in human cells remains largely unknown. Here, we demonstrate that And‐1, a replisome component, acts together with ATR to activate Chk1. And‐1 is phosphorylated at T826 by ATR following replication stress, and this phosphorylation is required for And‐1 to accumulate at the damage sites, where And‐1 promotes the interaction between Claspin and Chk1, thereby stimulating efficient Chk1 activation by ATR. Significantly, And‐1 binds directly to ssDNA and facilitates the association of Claspin with ssDNA. Furthermore, And‐1 associates with replication forks and is required for the recovery of stalled forks. These studies establish a novel ATR–And‐1 axis as an important regulator for efficient Chk1 activation and reveal a novel mechanism of how the replisome regulates the replication checkpoint and genomic stability.  相似文献   

13.
The genome integrity checkpoint is a conserved signaling pathway that is regulated in yeast by the Mec1 (homologous to human ATR) and Rad53 (homologous to human Chk1) kinases. The pathway coordinates a multifaceted response that allows cells to cope with DNA damage and DNA replication stress. The full activation of the checkpoint blocks origin firing, stabilizes replication forks, activates DNA repair proteins and may lead to senescence or apoptosisin higher eukaryotes. We have recently demonstrated that endogenous replication stress can activate the genome integrity checkpoint in budding yeast at a low level that does not go so far as to interfere with cell cycle progression, but it does activate DNA damage-inducible proteins. Here we demonstrate that the low level pre-activation of the checkpoint, either by endogenous replication stress or by the nucleotide-depleting drug hydroxyurea, can increase damage tolerance to multiple DNA-damaging agents. These results may provide new strategies for using the checkpoint to protect normal cells from genotoxic stress.  相似文献   

14.
15.
Replication of DNA is a fundamental biological process that ensures precise duplication of the genome and thus safeguards inheritance. Any errors occurring during this process must be repaired before the cell divides, by activating the DNA damage response (DDR) machinery that detects and corrects the DNA lesions. Consistent with its significance, DNA replication is under stringent control, both spatial and temporal. Defined regions of the genome are replicated at specific times during S phase and the speed of replication fork progression is adjusted to fully replicate DNA in pace with the cell cycle. Insults that impair DNA replication cause replication stress (RS), which can lead to genomic instability and, potentially, to cell transformation. In this perspective, we review the current concept of replication stress, including the recent findings on the effects of accelerated fork speed and their impact on genomic (in)stability. We discuss in detail the Fork Speed Regulatory Network (FSRN), an integrated molecular machinery that regulates the velocity of DNA replication forks. Finally, we explore the potential for targeting FSRN components as an avenue to treat cancer.  相似文献   

16.
17.
Cells are never more vulnerable than during DNA replication, which represents a major moment of potential genetic instability. Genotoxic insults induce many different forms of DNA damage that may interfere with the ability of cells to properly duplicate their genome. Primary damage may in turn undergo structural transformations during DNA replication, thus generating secondary lesions that may be even more dangerous. Cells experiencing replication of damaged DNA or replication blocks activate an S-phase checkpoint response that assures the fidelity and completion of DNA replication before cells enter M-phase. The S-phase checkpoint pathway regulates not only progress through the cell cycle but also DNA repair and DNA replication itself.  相似文献   

18.
The DNA damage checkpoint regulates DNA replication and arrests cell cycle progression in response to genotoxic stress. In Saccharomyces cerevisiae, the protein kinase Rad53 plays a central role in preventing genomic instability and maintaining viability in the presence of replication stress and DNA damage. Activation of Rad53 depends on phosphorylation by the upstream kinase Mec1, followed by autophosphorylation on multiple residues. Also critical for cell viability, the molecular mechanism of Rad53 deactivation remains incompletely understood. Rad53 dephosphorylation after repair of a persistent double strand break in G(2)/M has been shown to depend on the presence of the PP2C-type phosphatases Ptc2 and Ptc3. More recently, the PP2A-like protein phosphatase Pph3 has been shown to be required to dephosphorylate Rad53 after DNA methylation damage in S phase. However, we show here that Ptc2/3 are dispensable for Rad53 deactivation after replication stress or DNA methylation damage. Pph3 is also dispensable for the deactivation of Rad53 after replication stress. In addition, Rad53 kinase activity is still deactivated in pph3 null cells after DNA methylation damage, despite persistent Rad53 hyperphosphorylation. Finally, a strain in which the three phosphatases are deleted shows a severe defect in Rad53 kinase deactivation after DNA methylation damage but not after replication stress. In all, our results suggest that distinct phosphatases operate to return Rad53 to its basal state after different genotoxic stresses and that a yet unidentified phosphatase may be responsible for the deactivation of Rad53 after replication stress.  相似文献   

19.
The related PIK-like kinases Ataxia-Telangiectasia Mutated (ATM) and ATM- and Rad3-related (ATR) play major roles in the regulation of cellular responses to DNA damage or replication stress. The pro-apoptotic role of ATM and p53 in response to ionizing radiation (IR) has been widely investigated. Much less is known about the control of apoptosis following DNA replication stress. Recent work indicates that Chk1, the downstream phosphorylation target of ATR, protects cells from apoptosis induced by DNA replication inhibitors as well as IR. The aim of the work reported here was to determine the roles of ATM- and ATR-protein kinase cascades in the control of apoptosis following replication stress and the relationship between Chk1-suppressed apoptotic pathways responding to replication stress or IR. ATM and ATR/Chk1 signalling pathways were manipulated using siRNA-mediated depletions or specific inhibitors in two tumour cell lines or fibroblasts derived from patients with inherited mutations. We show that depletion of ATM or its downstream phosphorylation targets, NBS1 and BID, has relatively little effect on apoptosis induced by DNA replication inhibitors, while ATR or Chk1 depletion strongly enhances cell death induced by such agents in all cells tested. Furthermore, early events occurring after the disruption of DNA replication (accumulation of RPA foci and RPA34 hyperphosphorylation) in ATR- or Chk1-depleted cells committed to apoptosis are not detected in ATM-depleted cells. Unlike the Chk1-suppressed pathway responding to IR, the replication stress-triggered apoptotic pathway did not require ATM and is characterized by activation of caspase 3 in both p53-proficient and -deficient cells. Taken together, our results show that the ATR-Chk1 signalling pathway plays a major role in the regulation of death in response to DNA replication stress and that the Chk1-suppressed pathway protecting cells from replication stress is clearly distinguishable from that protecting cells from IR.  相似文献   

20.
The related PIK-like kinases Ataxia-Telangiectasia Mutated (ATM) and ATM- and Rad3-related (ATR) play major roles in the regulation of cellular responses to DNA damage or replication stress. The pro-apoptotic role of ATM and p53 in response to ionizing radiation (IR) has been widely investigated. Much less is known about the control of apoptosis following DNA replication stress. Recent work indicates that Chk1, the downstream phosphorylation target of ATR, protects cells from apoptosis induced by DNA replication inhibitors as well as IR. The aim of the work reported here was to determine the roles of ATM- and ATR-protein kinase cascades in the control of apoptosis following replication stress and the relationship between Chk1-suppressed apoptotic pathways responding to replication stress or IR. ATM and ATR/Chk1 signalling pathways were manipulated using siRNA-mediated depletions or specific inhibitors in two tumour cell lines or fibroblasts derived from patients with inherited mutations. We show that depletion of ATM or its downstream phosphorylation targets, NBS1 and BID, has relatively little effect on apoptosis induced by DNA replication inhibitors, while ATR or Chk1 depletion strongly enhances cell death induced by such agents in all cells tested. Furthermore, early events occurring after the disruption of DNA replication (accumulation of RPA foci and RPA34 hyperphosphorylation) in ATR- or Chk1-depleted cells committed to apoptosis are not detected in ATM-depleted cells. Unlike the Chk1-suppressed pathway responding to IR, the replication stress-triggered apoptotic pathway did not require ATM and is characterized by activation of caspase 3 in both p53-proficient and -deficient cells. Taken together, our results show that the ATR-Chk1 signalling pathway plays a major role in the regulation of death in response to DNA replication stress and that the Chk1-suppressed pathway protecting cells from replication stress is clearly distinguishable from that protecting cells from IR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号