首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
BACKGROUND: HIV-1 reservoir is early established during PHI. It is reduced, but not extinguished by early therapy: DNA containing cells are still detectable after months of successful viremia suppression. To define the best method to measure low level viral replication, we determined the extent of HIV reservoir in 11 acutely infected patients and evaluated how it is renewed even during successful treatment. METHODS: Eleven acutely infected HIV patients were included in the study. Three where not treated with antiretroviral drugs while 8 underwent early aggressive antiretroviral treatment (HAART) which, in 3 cases, was associated to cyclosporin A (CsA) administration. HIV viremia was monitored by commercially available methods while HIV-DNA and cellular RNA quantitation were obtained by in house PCR and RT-PCR respectively, in the gag region. RESULTS: Significant CD4 recover and HIV viremia suppression were reached in a mean period of three to six months in all treated patients. The course of the HIV-DNA and of cellular HIV RNA reduction showed a similar trend. This variation was slower, if compared to plasma viremia and never reached undetectable levels, justifying the rebound of viremia observed at therapy interruption. CONCLUSIONS: These data suggest and confirm that complete abolition of viral replication is not achieved and viral reservoir may be re-expanded even after short term rebound of viremia. Scheduling of possible structured therapy interruption should be designed based on multiple virological parameters and on the individual characteristics of the patients.  相似文献   

2.
3.
The mechanisms underlying the lack of disease progression in natural simian immunodeficiency virus (SIV) hosts are still poorly understood. To test the hypothesis that SIV-infected African green monkeys (AGMs) avoid AIDS due to virus replication occurring in long-lived infected cells, we infected six animals with SIVagm and treated them with potent antiretroviral therapy [ART; 9-R-(2-phosphonomethoxypropyl) adenine (tenofovir) and beta-2,3-dideoxy-3-thia-5-fluorocytidine (emtricitabine)]. All AGMs showed a rapid decay of plasma viremia that became undetectable 36 h after ART initiation. A significant decrease of viral load was observed in peripheral blood mononuclear cells and intestine. Mathematical modeling of viremia decay post-ART indicates a half-life of productively infected cells ranging from 4 to 9.5 h, i.e., faster than previously reported for human immunodeficiency virus and SIV. ART induced a slight but significant increase in peripheral CD4(+) T-cell counts but no significant changes in CD4(+) T-cell levels in lymph nodes and intestine. Similarly, ART did not significantly change the levels of cell proliferation, activation, and apoptosis, already low in AGMs chronically infected with SIVagm. Collectively, these results indicate that, in SIVagm-infected AGMs, the bulk of virus replication is sustained by short-lived cells; therefore, differences in disease outcome between SIVmac infection of macaques and SIVagm infection of AGMs are unlikely due to intrinsic differences in the in vivo cytopathicities between the two viruses.  相似文献   

4.
There is currently no SIV macaque model in which the effects of combination antiretroviral therapy on tissue immune responses and latent reservoirs have been measured. This study was performed to define the impact of combination therapy on the specificity and distribution of the T lymphocyte response in multiple tissue compartments. Pigtailed macaques (Macaca nemestrina) were infected with SIV/17E-Fr and treated with combination antiretroviral therapy consisting of 9-R-(2-phosphonomethoxypropyl)adenine (PMPA) and beta-2',3'-dideoxy-3'-thia-5-fluorocytidine (FTC). The SIV-specific T lymphocyte response was measured in peripheral blood, spleen and several lymph nodes at necropsy by IFN-gamma Elispot analysis. Two animals (one treated, one untreated) had high acute peak viremia, which was associated with lower SIV-specific T lymphocyte responses in the peripheral blood and lymphoid tissues. In the treated animal, viremia was controlled to low or undetectable for the study duration, and virus-specific responses remained low. The untreated animal remained viremic throughout the study and developed clinical symptoms of AIDS. In contrast, the two animals that had lower acute peak viremia (one treated, one untreated) had more robust T lymphocyte responses, and controlled viral replication. Virus-specific responses were detected in the treated animal despite 6 months of suppressive therapy. These data suggest that in this model, in the context of acute peak viremia and weak T cell responses, combination therapy may be essential to control virus replication and disease progression. Conversely, in the setting of low initial viremia and robust T lymphocyte responses, treatment does not have a detrimental effect on the immune response.  相似文献   

5.
Despite suppression of viremia in patients on highly active antiretroviral therapy (HAART), human immunodeficiency virus type 1 persists in a latent reservoir in the resting memory CD4(+) T lymphocytes and possibly in other reservoirs. To better understand the mechanisms of viral persistence, we established a simian immunodeficiency virus (SIV)-macaque model to mimic the clinical situation of patients on suppressive HAART and developed assays to detect latently infected cells in the SIV-macaque system. In this model, treatment of SIV-infected pig-tailed macaques (Macaca nemestrina) with the combination of 9-R-(2-phosphonomethoxypropyl)adenine (PMPA; tenofovir) and beta-2',3'-dideoxy-3'-thia-5-fluorocytidine (FTC) suppressed the levels of plasma virus to below the limit of detection (100 copies of viral RNA per ml). In treated animals, levels of viremia remained close to or below the limit of detection for up to 6 months except for an isolated "blip" of detectable viremia in each animal. Latent virus was measured in blood, spleen, lymph nodes, and thymus by several different methods. Replication-competent virus was recovered after activation of a 99.5% pure population of resting CD4(+) T lymphocytes from a lymph node of a treated animal. Integrated SIV DNA was detected in resting CD4(+) T cells from spleen, peripheral blood, and various lymph nodes including those draining the gut, the head, and the limbs. In contrast to the wide distribution of latently infected cells in peripheral lymphoid tissues, neither replication-competent virus nor integrated SIV DNA was detected in thymocytes, suggesting that thymocytes are not a major reservoir for virus in pig-tailed macaques. The results provide the first evidence for a latent viral reservoir for SIV in macaques and the most extensive survey of the distribution of latently infected cells in the host.  相似文献   

6.
Interruption of suppressive highly active antiretroviral therapy (HAART) in HIV-infected patients leads to increased HIV replication and viral rebound in peripheral blood. Effects of therapy interruption on gut-associated lymphoid tissue (GALT) have not been well investigated. We evaluated longitudinal changes in viral replication and emergence of viral variants in the context of T cell homeostasis and gene expression in GALT of three HIV-positive patients who initiated HAART during primary HIV infection but opted to interrupt therapy thereafter. Longitudinal viral sequence analysis revealed that a stable proviral reservoir was established in GALT during primary HIV infection that persisted through early HAART and post-therapy interruption. Proviral variants in GALT and peripheral blood mononuclear cells (PBMCs) displayed low levels of genomic diversity at all times. A rapid increase in viral loads with a modest decline of CD4(+) T cells in peripheral blood was observed, while gut mucosal CD4(+) T cell loss was severe following HAART interruption. This was accompanied by increased mucosal gene expression regulating interferon (IFN)-mediated antiviral responses and immune activation, a profile similar to those found in HAART-naive HIV-infected patients. Sequence analysis of rebound virus suggested that GALT was not the major contributor to the postinterruption plasma viremia nor were GALT HIV reservoirs rapidly replaced by HIV rebound variants. Our data suggest an early establishment and persistence of viral reservoirs in GALT with minimal diversity. Early detection of and therapy for HIV infection may be beneficial in controlling viral evolution and limiting establishment of diverse viral reservoirs in the mucosal compartment.  相似文献   

7.
The appearance of human immunodeficiency virus type 1 (HIV-1) plasma viremia is associated with progression to symptomatic disease and CD4+ T cell depletion. To locate the source of systemic viremia, this study employed a novel method to trace HIV-1 infection in vivo. We created JRCSFξnef, a pool of infectious HIV-1 (strain JR-CSF) with highly mutated nef gene regions by random mutagenesis PCR and infected this mutated virus pool into both Jurkat-CCR5 cells and hematopoietic stem cell-transplanted humanized mice. Infection resulted in systemic plasma viremia in humanized mice and viral RNA sequencing helped us to identify multiple lymphoid organs such as spleen, lymph nodes, and bone marrow but not peripheral blood cells as the source of systemic viremia. Our data suggest that this method could be useful for the tracing of viral trafficking in vivo.  相似文献   

8.
Cellular immune responses make an important contribution to both the control of human immunodeficiency virus (HIV) replication and disease progression. We used a pathogenic model of SIVmac251 infection of cynomolgus macaques to longitudinally evaluate cellular immune responses in association with various rates of disease progression. We found an inverse relationship between plasma viral load and the simian immunodeficiency virus (SIV)-specific T cells responses in peripheral blood and lymph nodes. SIV-specific T-cell responses in peripheral blood were transient during primary infection, with the highest responses detected around 3 months after infection. There was also a transient increase of central memory CD8+ T cells in peripheral blood during primary infection, and effector memory T-cell counts in peripheral lymph nodes were increased. This study emphasizes the importance of the early virus-specific immune responses in the outcome of HIV/SIV disease and provides details about the changes of virus-specific immune responses over time.  相似文献   

9.
10.

Background

Extensive studies of primary infection are crucial to our understanding of the course of HIV disease. In SIV-infected macaques, a model closely mimicking HIV pathogenesis, we used a combination of three markers -- viral RNA, 2LTR circles and viral DNA -- to evaluate viral replication and dissemination simultaneously in blood, secondary lymphoid tissues, and the gut during primary and chronic infections. Subsequent viral compartmentalization in the main target cells of the virus in peripheral blood during the chronic phase of infection was evaluated by cell sorting and viral quantification with the three markers studied.

Results

The evolutions of viral RNA, 2LTR circles and DNA levels were correlated in a given tissue during primary and early chronic infection. The decrease in plasma viral load principally reflects a large decrease in viral replication in gut-associated lymphoid tissue (GALT), with viral RNA and DNA levels remaining stable in the spleen and peripheral lymph nodes. Later, during chronic infection, a progressive depletion of central memory CD4+ T cells from the peripheral blood was observed, accompanied by high levels of viral replication in the cells of this subtype. The virus was also found to replicate at this point in the infection in naive CD4+ T cells. Viral RNA was frequently detected in monocytes, but no SIV replication appeared to occur in these cells, as no viral DNA or 2LTR circles were detected.

Conclusion

We demonstrated the persistence of viral replication and dissemination, mostly in secondary lymphoid tissues, during primary and early chronic infection. During chronic infection, the central memory CD4+ T cells were the major site of viral replication in peripheral blood, but viral replication also occurred in naive CD4+ T cells. The role of monocytes seemed to be limited to carrying the virus as a cargo because there was an observed lack of replication in these cells. These data may have important implications for the targeting of HIV treatment to these diverse compartments.  相似文献   

11.
Apoptosis in peripheral blood leukocytes (PBL) has been estimated by the enhancement of spontaneous apoptosis after in vitro culture, because apoptotic cells have not been observed directly in freshly isolated PBL in the course of HIV/AIDS. In monkeys infected with a highly pathogenic simian/human immunodeficiency virus (SHIV), which corresponds to rapid progressors of HIV infection, a high frequency of apoptotic cells was directly detected in fresh PBL by electron-microscopic studies. Peripheral blood apoptosis transiently occurred after intense plasma viremia, and peaking at 3 weeks postinfection; occurrence was not limited specifically to lymphocytes, but also occurred in other types of leukocytes. Apoptosis in peripheral lymph nodes was also detected following intense plasma viremia. However, the in vivo apoptosis was not detected in nonpathogenic SHIV-infected monkeys that showed no cell loss. Thus, we directly showed the apoptosis of PBL, which might be associated with pathogenic SHIV produced during the time of plasma viremia.  相似文献   

12.
13.
In contrast to pathogenic human immunodeficiency virus and simian immunodeficiency virus (SIV) infections, chronic SIVagm infections in African green monkeys (AGMs) are characterized by persistently low peripheral and tissue viral loads that correlate with the lack of disease observed in these animals. We report here data on the dynamics of acute SIVagm infection in AGMs that exhibit remarkable similarities with viral replication patterns observed in peripheral blood during the first 2 weeks of pathogenic SIVmac infections. Plasma viremia was evident at day 3 postinfection (p.i.) in AGMs, and rapid viral replication led by days 7 to 10 to peak viremias characterized by high levels of antigenemia (1.2 to 5 ng of p27/ml of plasma), peripheral DNA viral load (10(4) to 10(5) DNA copies/10(6) peripheral blood mononuclear cells [PBMC]), and plasma RNA viral load (2 x 10(6) to 2 x 10(8) RNA copies/ml). The lymph node (LN) RNA and DNA viral load patterns were similar to those in blood, with peaks observed between day 7 and day 14. These values in LNs (ranging from 3 x 10(5) to 3 x 10(6) RNA copies/10(6) LN cell [LNC] and 10(3) to 10(4) DNA copies/10(6) LNC) were at no time point higher than those observed in the blood. Both in LNs and in blood, rapid and significant decreases were observed in all infected animals after this peak of viral replication. Within 3 to 4 weeks p. i., antigenemia was no longer detectable and peripheral viral loads decreased to values similar to those characteristic of the chronic phase of infection (10(2) to 10(3) DNA copies/10(6) PBMC and 2 x 10(3) to 2 x 10(5) RNA copies/ml of plasma). In LNs, viral loads declined to 5 x 10(1) to 10(3) DNA copies and 10(4) to 3 x 10(5) RNA copies per 10(6) LNC at day 28 p.i. and continued to decrease until day 84 p.i. (<10 to 3 x 10(4) RNA copies/10(6) LNC). Despite extensive viremia during primary infection, neither follicular hyperplasia nor CD8(+) cell infiltration into LN germinal centers was detected. Altogether, these results indicate that the nonpathogenic outcome of SIVagm infection in its natural host is associated with a rapidly induced control of viral replication in response to SIVagm infection, rather than with a poorly replicating virus or a constitutive host genetic resistance to virus replication.  相似文献   

14.
African green monkeys (AGMs) persistently infected with SIVagm do not develop AIDS, although their plasma viremia levels can reach those reported for pathogenic HIV-1 and SIVmac infections. In contrast, the viral burden in lymph nodes in SIVagm-infected AGMs is generally lower in comparison with HIV/SIVmac pathogenic infections, at least during the chronic phase of SIVagm infection. We searched for the primary targets of viral replication, which might account for the high viremias in SIVagm-infected AGMs. We evaluated for the first time during primary infection SIVagm dissemination in various lymphoid and non-lymphoid tissues. Sixteen distinct organs at a time point corresponding to maximal virus production were analyzed for viral RNA and DNA load. At days 8 and 9 p.i., viral RNA could be detected in a wide range of tissues, such as jejunum, spleen, mesenteric lymph nodes, thymus and lung. Quantification of viral DNA and RNA as well as of productively infected cells revealed that viral replication during this early phase takes place mainly in secondary lymphoid organs and in the gut (5 x 10(4)-5 x 10(8) RNA copies/10(6) cells). By 4 years p.i., RNA copy numbers were below detection level in thymus and lung. Secondary lymphoid organs displayed 6 x 10(2)-2 x 10(6) RNA copies/10(6) cells, while some tissue fragments of ileum and jejunum still showed high viral loads (up to 10(9) copies/10(6) cells). Altogether, these results indicate a rapid dissemination of SIVagm into lymphoid tissues, including the small intestine. The latter, despite showing marked regional variations, most likely contributes significantly to the high levels of viremia observed during SIVagm infection.  相似文献   

15.
The pathogenesis of AIDS virus infection in a nonhuman primate AIDS model was studied by comparing plasma viral loads, CD4(+) T-cell subpopulations in peripheral blood mononuclear cells, and simian immunodeficiency virus (SIV) infection in lymph nodes for rhesus macaques infected with a pathogenic molecularly cloned SIVmac239 strain and those infected with its nef deletion mutant (Deltanef). In agreement with many reports, whereas SIVmac239 infection induced AIDS and depletion of memory CD4(+) T cells in 2 to 3 years postinfection (p.i.), Deltanef infection did not induce any manifestation associated with AIDS up to 6.5 years p.i. To explore the difference in SIV infection in lymphoid tissues, we biopsied lymph nodes at 2, 8, 72, and 82 weeks p.i. and analyzed them by pathological techniques. Maximal numbers of SIV-infected cells (SIV Gag(+), Env(+), and RNA(+)) were detected at 2 weeks p.i. in both the SIVmac239-infected animals and the Deltanef-infected animals. In the SIVmac239-infected animals, most of the infected cells were localized in the T-cell-rich paracortex, whereas in the Deltanef-infected animals, most were localized in B-cell-rich follicles and in the border region between the paracortex and the follicles. Analyses by double staining of CD68(+) macrophages and SIV Gag(+) cells and by double staining of CD3(+) T cells and SIV Env(+) cells revealed that SIV-infected cells were identified as CD4(+) T cells in either the SIVmac239 or the Deltanef infection. Whereas the many functions of Nef protein were reported from in vitro studies, our finding of SIVmac239 replication in the T-cell-rich paracortex in the lymph nodes supports the reported roles of Nef protein in T-cell activation and enhancement of viral infectivity. Furthermore, the abundance of SIVmac239 infection and the paucity of Deltanef infection in the T-cell-rich paracortex accounted for the differences in viral replication and pathogenicity between SIVmac239 and the Deltanef mutant. Thus, our in vivo study indicated that the nef gene enhances SIV replication by robust productive infection in memory CD4(+) T cells in the T-cell-rich region in lymphoid tissues.  相似文献   

16.
17.
In human immunodeficiency virus (HIV)-infected patients treated with potent antiretroviral therapy, the persistence of latently infected cells may reflect the long decay half-life of this cellular reservoir or ongoing viral replication at low levels with continuous replenishment of the population or both. To address these possibilities, sequences encompassing the C2 and V3 domains of HIV-1 env were analyzed from virus present in baseline plasma and from viral isolates obtained after 2 years of suppressive therapy in six patients. The presence of sequence changes consistent with evolution was demonstrated for three subjects and correlated with less complete suppression of viral replication, as indicated by the rapidity of the initial virus load decline or the intermittent reappearance of even low levels of detectable viremia. Together, these results provide evidence for ongoing replication. In the remaining three patients, virus recovered after 2 years of therapy was either genotypically contemporary with or ancestral to virus present in plasma 2 years before, indicating that virus recovery had indeed resulted from activation of latently infected cells.  相似文献   

18.
Treatment of HIV-1-infected individuals with a combination of anti-retroviral agents results in sustained suppression of HIV-1 replication, as evidenced by a reduction in plasma viral RNA to levels below the limit of detection of available assays. However, even in patients whose plasma viral RNA levels have been suppressed to below detectable levels for up to 30 months, replication-competent virus can routinely be recovered from patient peripheral blood mononuclear cells and from semen. A reservoir of latently infected cells established early in infection may be involved in the maintenance of viral persistence despite highly active anti-retroviral therapy. However, whether virus replication persists in such patients is unknown. HIV-1 cDNA episomes are labile products of virus infection and indicative of recent infection events. Using episome-specific PCR, we demonstrate here ongoing virus replication in a large percentage of infected individuals on highly active anti-retroviral therapy, despite sustained undetectable levels of plasma viral RNA. The presence of a reservoir of 'covert' virus replication in patients on highly active anti-retroviral therapy has important implications for the clinical management of HIV-1-infected individuals and for the development of virus eradication strategies.  相似文献   

19.
Previous studies suggested that simian immunodeficiency viruses isolated from African green monkeys (SIVagm) are relatively nonpathogenic. The report describes the isolation and biologic and molecular characterization of a pathogenic SIVagm strain derived from a naturally infected African green monkey. This virus induced an AIDS-like syndrome characterized by early viremia, frequent thrombocytopenia, severe lymphoid depletion, opportunistic infections, meningoencephalitis, and death of five of eight macaques within 1 year after infection. An infectious clone derived from this isolate reproduced the immunodeficiency disease in pig-tailed (PT) macaques, providing definitive proof of the etiology of this syndrome. Although the virus was highly pathogenic in PT macaques, no disease was observed in experimentally infected rhesus macaques and African green monkeys despite reproducible infection of the last two species. Whereas infection of PT macaques was associated with a high viral load in plasma, peripheral blood mononuclear cells, and tissues, low-level viremia and infrequent expression in lymph nodes of rhesus macaques and African green monkeys suggest that differences in pathogenicity are associated with the extent of in vivo replication. The availability of a pathogenic molecular clone will provide a useful model for the study of viral and host factors that influence pathogenicity.  相似文献   

20.
Among the many simian immunodeficiency virus (SIV) immunogens, only live attenuated viral vaccines have afforded strong protection to a natural pathogenic isolate. Since the promoter is crucial to the tempo of viral replication in general, it was reasoned that promoter exchange might confer a novel means of attenuating SIV. The core enhancer and promoter sequences of the SIV macaque 239nefstop strain (NF-κB/Sp1 region from −114 bp to mRNA start) have been exchanged for those of the human cytomegalovirus immediate-early promoter (CMV-IE; from −525 bp to mRNA start). During culture of the resulting virus, referred to as SIVmegalo, on CEMx174 or rhesus macaque peripheral blood mononuclear cells, deletions arose in distal regions of the CMV-IE sequences that stabilized after 1 or 2 months of culture. However, when the undeleted form of SIVmegalo was inoculated into rhesus macaques, animals showed highly controlled viremia during primary and persistent infection. Compared to parental virus infection in macaques, primary viremia was reduced by >1,000-fold to undetectable levels, with little sign of an increase of cycling cells in lymph nodes, CD4+ depletion, or altered T-cell activation markers in peripheral blood. Moreover, in contrast to wild-type infection in most infected animals, the nef stop mutation did not revert to the wild-type codon, indicating yet again that replication was dramatically curtailed. Despite such drastic attenuation, antibody titers and enzyme-linked immunospot reactivity to SIV peptides, although slower to appear, were comparable to those seen in a parental virus infection. When animals were challenged intravenously at 4 or 6 months with the uncloned pathogenic SIVmac251 strain, viremia was curtailed by ~1,000-fold at peak height without any sign of hyperactivation in CD4+- or CD8+-T-cell compartment or increase in lymph node cell cycling. To date, there has been a general inverse correlation between attenuation and protection; however, these findings show that promoter exchange constitutes a novel means to highly attenuate SIV while retaining the capacity to protect against challenge virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号