首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Topical application of double-stranded RNA (dsRNA) can induce RNA interference (RNAi) and modify traits in plants without genetic modification. However, delivering dsRNA into plant cells remains challenging. Using developing tomato (Solanum lycopersicum) pollen as a model plant cell system, we demonstrate that layered double hydroxide (LDH) nanoparticles up to 50 nm in diameter are readily internalized, particularly by early bicellular pollen, in both energy-dependent and energy-independent manners and without physical or chemical aids. More importantly, these LDH nanoparticles efficiently deliver dsRNA into tomato pollen within 2–4 h of incubation, resulting in an 89% decrease in transgene reporter mRNA levels in early bicellular pollen 3-d post-treatment, compared with a 37% decrease induced by the same dose of naked dsRNA. The target gene silencing is dependent on the LDH particle size, the dsRNA dose, the LDH–dsRNA complexing ratio, and the treatment time. Our findings indicate that LDH nanoparticles are an effective nonviral vector for the effective delivery of dsRNA and other biomolecules into plant cells.

Developing tomato pollen internalizes layered double hydroxide nanoparticles smaller than 50 nm that facilitate delivery of double-stranded RNA, enhancing RNA interference of a target gene.  相似文献   

2.
RNA interference (RNAi) is an important tool for studying gene function and genetic networks. Double-stranded RNA (dsRNA) triggers RNAi that selectively silences gene expression mainly by degrading target mRNA sequences. Short interfering RNA, short hairpin RNA (shRNA), long dsRNA, and microRNA-based shRNA (shRNAmir) are four different types of dsRNA that have been widely used to silence gene expression in cultured cells, tissues, organs, and organisms. Long dsRNAs are usually 200–500 nucleotides in length and can selectively suppress expression of target genes in Caenorhabditis elegans and Drosophila but not in mammals due to unwanted non-specific knockdown. Thus, multiple attempts have been made to synthesize, express, and deliver short dsRNAs that specifically silence target genes in mammals. We describe a method for constructing an RNAi library by converting cDNAs into shRNAmir30 sequences by sequential treatment with different enzymes and affinity purification of biotin- or digoxygenin-labeled DNA fragments. We also developed a system to generate stable cell lines that uniformly express shRNAmir30s and fluorescence reporters by Cre recombinase-dependent site-specific recombination. Thus, combined with the RNAi library, this system facilitates screening for potent RNAi sequences that strongly suppress expression of target genes.  相似文献   

3.
Double-stranded RNA (dsRNA) fragments are readily internalized and processed by Drosophila S2 cells, making these cells a widely used tool for the analysis of gene function by gene silencing through RNA interference (RNAi). The underlying mechanisms are insufficiently understood. To identify components of the RNAi pathway in S2 cells, we developed a screen based on rescue from RNAi-induced lethality. We identified Argonaute 2, a core component of the RNAi machinery, and three gene products previously unknown to be involved in RNAi in Drosophila: DEAD-box RNA helicase Belle, 26 S proteasome regulatory subunit 8 (Pros45), and clathrin heavy chain, a component of the endocytic machinery. Blocking endocytosis in S2 cells impaired RNAi, suggesting that dsRNA fragments are internalized by receptor-mediated endocytosis. Indeed, using a candidate gene approach, we identified two Drosophila scavenger receptors, SR-CI and Eater, which together accounted for more than 90% of the dsRNA uptake into S2 cells. When expressed in mammalian cells, SR-CI was sufficient to mediate internalization of dsRNA fragments. Our data provide insight into the mechanism of dsRNA internalization by Drosophila cells. These results have implications for dsRNA delivery into mammalian cells.  相似文献   

4.
Specific inhibition of gene expression by exogenous homologous double-stranded RNA (dsRNA) in invertebrates and in the early development of vertebrates is termed RNA interference. Cultured cells were cotransfected with reporter plasmids and dsRNA. The inhibitory effect on reporter gene expression depended on the extent of homology between dsRNA and the target gene. RNA interference was also studied in cells cotransfected with plasmids directing synthesis of sense and antisense RNAs. Production of antisense RNA only slightly inhibited expression of the reporter gene. Simultaneous expression of both sense and antisense RNAs caused by cotransfection by corresponding plasmids did not inhibit expression of the reporter construct.  相似文献   

5.
6.
The induction of the naturally occurring phenomenon of RNA interference (RNAi) to study gene function in insects is now common practice. With appropriately chosen targets, the RNAi pathway has also been exploited for insect control, typically through oral delivery of dsRNA. Adapting current methods to deliver foreign compounds, such as amino acids and pesticides, to mosquitoes through sucrose solutions, we tested whether such an approach could be used in the yellow fever mosquito, Aedes aegypti. Using a non‐specific dsRNA construct, we found that adult Ae. aegypti ingested dsRNA through this method and that the ingested dsRNA can be recovered from the mosquitoes post‐feeding. Through the feeding of a species‐specific dsRNA construct against vacuolar ATPase, subunit A, we found that significant gene knockdown could be achieved at 12, 24 and 48 h post‐feeding.  相似文献   

7.
Specific inhibition of gene expression by exogenous homologous double-stranded RNA (dsRNA) in invertebrates and in the early development of vertebrates is termed RNA interference. Cultured cells were cotransfected with reporter plasmids and dsRNA. The inhibitor effect on reporter gene expression depended on the extent of homology between dsRNA and the target gene. RNA interference was also studied in cells cotransfected with plasmids directing synthesis of sense and antisense RNAs. Production of antisense RNA only slightly inhibited expression of the reporter gene. Simultaneous expression of both sense and antisense RNAs from a special plasmid did not inhibit expression of the reporter construct.  相似文献   

8.
9.
10.
H1启动子siRNA载体的构建及应用   总被引:1,自引:0,他引:1  
利用双链RNA(dsRNA)调控基因表达已经成为研究基因功能的有力工具。用人H1启动子构建了pBS/H1PS小干扰RNA(siRNA)表达载体,用于在哺乳动物细胞中产生特异性dsRNA转录产物。通过对293细胞中的PSMA7分子进行表达抑制,证明该siRNA载体能够有效产生针对靶基因的RNA干扰(RNAi)效应。  相似文献   

11.
Means JC  Muro I  Clem RJ 《Journal of virology》2003,77(8):4481-4488
The Op-iap3 gene from the baculovirus Orgyia pseudotsugata M nucleopolyhedrovirus (OpMNPV) inhibits apoptosis induced by a mutant of Autographa californica MNPV (AcMNPV) that lacks the antiapoptotic gene p35, as well as apoptosis induced by a wide range of other stimuli in both mammalian and insect cells. However, the role of Op-iap3 during OpMNPV infection has not been previously examined. To determine the function of the Op-IAP3 protein during OpMNPV infection, we used RNA interference (RNAi) to silence Op-iap3 expression during OpMNPV infection of Ld652Y cells. Infected cells treated with Op-iap3 double-stranded RNA (dsRNA) did not accumulate detectable Op-iap3 mRNA, confirming that the Op-iap3 gene was effectively silenced. Op-IAP3 protein was found to be a component of the budded virion; however, in OpMNPV-infected cells treated with Op-iap3 dsRNA, the Op-IAP3 protein that was introduced by the inoculum virus decreased to almost undetectable levels by 12 h after dsRNA addition. Apoptosis was observed in infected cells treated with Op-iap3 dsRNA beginning at 12 h, and by 48 h, almost all of the cells had undergone apoptosis. These results show for the first time that Op-IAP3 is necessary to prevent apoptosis during OpMNPV infection. In addition, our results demonstrate that the RNAi technique can be an effective tool for studying baculovirus gene function.  相似文献   

12.
13.
One of the most promising tools for the control of fungal plant diseases is spray-induced gene silencing (SIGS). In SIGS, small interfering RNA (siRNA) or double-stranded RNA (dsRNA) targeting essential or virulence-related pathogen genes are exogenously applied to plants and postharvest products to trigger RNA interference (RNAi) of the targeted genes, inhibiting fungal growth and disease. However, SIGS is limited by the unstable nature of RNA under environmental conditions. The use of layered double hydroxide or clay particles as carriers to deliver biologically active dsRNA, a formulation termed BioClay™, can enhance RNA durability on plants, prolonging its activity against pathogens. Here, we demonstrate that dsRNA delivered as BioClay can prolong protection against Botrytis cinerea, a major plant fungal pathogen, on tomato leaves and fruit and on mature chickpea plants. BioClay increased the protection window from 1 to 3 weeks on tomato leaves and from 5 to 10 days on tomato fruits, when compared with naked dsRNA. In flowering chickpea plants, BioClay provided prolonged protection for up to 4 weeks, covering the critical period of poding, whereas naked dsRNA provided limited protection. This research represents a major step forward for the adoption of SIGS as an eco-friendly alternative to traditional fungicides.  相似文献   

14.
Gene silencing by RNA interference (RNAi) is an important research tool in many areas of biology. To effectively harness the power of this technique in order to explore tick functional genomics and tick-microorganism interactions, optimised parameters for RNAi-mediated gene silencing in tick cells need to be established. Ten cell lines from four economically important ixodid tick genera (Amblyomma, Hyalomma, Ixodes and Rhipicephalus including the sub-species Boophilus) were used to examine key parameters including small interfering RNA (siRNA), double stranded RNA (dsRNA), transfection reagent and incubation time for silencing virus reporter and endogenous tick genes. Transfection reagents were essential for the uptake of siRNA whereas long dsRNA alone was taken up by most tick cell lines. Significant virus reporter protein knockdown was achieved using either siRNA or dsRNA in all the cell lines tested. Optimum conditions varied according to the cell line. Consistency between replicates and duration of incubation with dsRNA were addressed for two Ixodes scapularis cell lines; IDE8 supported more consistent and effective silencing of the endogenous gene subolesin than ISE6, and highly significant knockdown of the endogenous gene 2I1F6 in IDE8 cells was achieved within 48 h incubation with dsRNA. In summary, this study shows that gene silencing by RNAi in tick cell lines is generally more efficient with dsRNA than with siRNA but results vary between cell lines and optimal parameters need to be determined for each experimental system.  相似文献   

15.
Identification and characterization of small RNAs involved in RNA silencing   总被引:22,自引:0,他引:22  
Aravin A  Tuschl T 《FEBS letters》2005,579(26):5830-5840
Double-stranded RNA (dsRNA) is a potent trigger of sequence-specific gene silencing mechanisms known as RNA silencing or RNA interference. The recognition of the target sequences is mediated by ribonucleoprotein complexes that contain 21- to 28-nucleotide (nt) guide RNAs derived from processing of the trigger dsRNA. Here, we review the experimental and bioinformatic approaches that were used to identify and characterize these small RNAs isolated from cells and tissues. The identification and characterization of small RNAs and their expression patterns is important for elucidating gene regulatory networks.  相似文献   

16.
RNA干涉及其应用前景   总被引:5,自引:7,他引:5  
张利生  陈大元 《遗传》2003,25(3):341-344
RNA干涉是指由特定双链RNA(dsRNA)引起的转录后基因沉默现象。研究表明,Dicer断裂dsRNA产生的小干涉RNA可以抑制哺乳动物体细胞和胚胎中的基因的表达。RdRP在扩增RNAi中起着关键性的作用,RdRP活性复制较长的触发性dsRNA或以一种非引物的方式复制短的siRNA,即以siRNA为引物的RdRP反应使靶mRNA转变为dsRNA,同时复制触发性dsRNA。所有的产物又可作为Dicer的底物,起始RdRP级联反应。本文综述了RNAi可能的作用机制,并对RNAi在分析功能基因组、药物治疗等方面的应用前景进行了展望。  相似文献   

17.
The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing   总被引:1,自引:0,他引:1  
Many metazoan cells can take up exogenous double-stranded (ds) RNA and use it to initiate an RNA silencing response, however, the mechanism for this uptake is ill-defined. Here, we identify the pathway for dsRNA uptake in Drosophila melanogaster S2 cells. Biochemical and cell biological analyses, and a genome-wide screen for components of the dsRNA-uptake machinery, indicated that dsRNA is taken up by an active process involving receptor-mediated endocytosis. Pharmacological inhibition of endocytic pathways disrupted exogenous dsRNA entry and the induction of gene silencing. This dsRNA uptake mechanism seems to be evolutionarily conserved, as knockdown of orthologues in Caenorhabditis elegans inactivated the RNA interference response in worms. Thus, this entry pathway is required for systemic RNA silencing in whole organisms. In Drosophila cells, pharmacological evidence suggests that dsRNA entry is mediated by pattern-recognition receptors. The possible role of these receptors in dsRNA entry may link RNA interference (RNAi) silencing to other innate immune responses.  相似文献   

18.
《Journal of Asia》2020,23(4):1160-1164
Despite extensive research during the past decade elucidating the mechanism of RNA interference (RNAi) in insects, it is not clear how ingested or injected double-stranded RNA (dsRNA) triggers RNAi response in the whole body or even its progeny, which is referred to as systemic RNAi. In the present study, we aim to understand how the dsRNA delivered into cells causes systemic RNAi using Colorado potato beetle cells (Lepd-SL1). We first tested if dsRNA treatment induces systemic RNAi in Lepd-SL1 cells. Exposure of a new batch of Lepd-SL1 cells to the conditioned medium where Lepd-SL1 cells treated with dsRNA targeting inhibitor of apoptosis were grown for 6 h induced apoptosis in these new batch of cells. We hypothesized the exosomes in the conditioned medium are responsible for RNAi-inducing effect. To test this hypothesis, we isolated exosomes from the conditioned medium from Lepd-SL1 cells that had been treated with dsGFP (dsRNA targeting gene coding for green fluorescent protein) or dsLuc (dsRNA targeting gene coding for the luciferase) were grown. RNA present in the purified exosomes was analyzed to check if long dsRNA or siRNA is accumulated in them. The results from the electrophoretic mobility shift assay clearly showed that the long dsRNAs are present in the exosomes. By knockdown of candidate genes involved in endosome recycling and generation pathways, we found that Rab4 and Rab35 are involved in exosome production and transport.  相似文献   

19.
Tran N  Raponi M  Dawes IW  Arndt GM 《FEBS letters》2004,573(1-3):127-134
The use of long double-stranded RNA (dsRNA) for gene silencing in mammalian cells has generally been restricted to embryonic cell types and proposed to induce non-specific effects on gene expression in differentiated cells. In this study, we report that foreign and endogenous gene expression can be regulated in immortalised human cell lines by co-expression of long complementary RNAs with the potential to form dsRNA. The observed gene silencing effect was transferable to recipient control cells, occurred independently of cytoplasmic Dicer and produced an epi-allelic series of clones suitable for gene function studies. This complementary RNA co-expression approach permits the use of long complementary RNAs for regulating specific gene expression in mammalian cells.  相似文献   

20.
RNA interference (RNAi) is a promising strategy to combat shrimp viral pathogens at lab-scale experiments. Development of effective orally delivered agents for double-stranded (ds)RNA is necessary for RNAi application at farm level. Since continuous shrimp cell lines have not been established, we are developing a dsRNA-delivery system in Spodoptera frugiperda (Sf9) cells for studying in vitro RNAi-mediated gene silencing of shrimp virus. Sf9 cells challenged with yellow head virus (YHV) were used for validating nanoparticles as effective dsRNA carriers. Inexpensive and biodegradable polymers, chitosan and its quarternized derivative (QCH4), were formulated with long dsRNA (>100 bp) targeting YHV. Their morphology and physicochemical properties were examined. When treated with chitosan- and QCH4-dsRNA complexes, at least 50% reduction in YHV infection in Sf9 cells relative to the untreated control was evident at 24h post infection with low cytoxicity. Inhibitory effects of chitosan- and QCH4-dsRNA complexes were comparable to that of dsRNA formulated with Cellfectin(?), a commercial lipid-based transfection reagent. The natural and quaternized chitosan prepared in this study can be used for shrimp virus-specific dsRNA delivery in insect cultures, and have potential for future development of dsRNA carriers in shrimp feed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号