首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vesiculation induced by amphiphiles in erythrocytes   总被引:4,自引:0,他引:4  
The ability of shape-transforming cationic, anionic, zwitterionic, and nonionic amphiphiles to induce vesiculation in human erythrocytes was studied. At concentrations where they exhibit maximum protection against hypotonic haemolysis (CAHmax) echinocytogenic amphiphiles induced a rapid release of exovesicles. Following 5 min of incubation, the vesicle release (acetylcholinesterase release) amounted from 4% (sodium alkyl sulphates) to 13% (zwittergents) of the total acetylcholinesterase activity of the erythrocytes. At concentrations corresponding to CAH50 the vesicle release was less than 15% of that released at CAHmax. The size and the appearance of the vesicles varied with the type of amphiphile. Stomatocytogenic amphiphiles which do not pass the erythrocytes through echinocytic stages, did not induce release of exovesicles. Electron and fluorescence microscopic observations of erythrocytes treated with stomatocytogenic amphiphiles strongly indicated that an endovesiculation had occurred. Amphiphiles which pass the erythrocytes through echinocytic stages before stomatocytic shapes are attained, induced a release of both exo- and endovesicles.  相似文献   

2.
In an attempt to define the parameters in amphiphilic molecules important for their interaction with the erythrocyte membrane, the effects of cationic, anionic, zwitterionic and nonionic amphiphilic agents (C10-C16) on osmotic fragility and transport of potassium and phosphate in human erythrocytes were studied. All the amphiphiles protected the erythrocytes against hypotonic haemolysis. Half-maximum protection occurred at a concentration which was about 15% of that inducing 50% haemolysis. The concentrations of amphiphiles required to induce protection or haemolysis were related to the length of the alkyl chain in a way indicating that a membrane/aqueous phase partition is the mechanism whereby the amphiphile monomers intercalate into the membrane. At antihaemolytic concentrations all the amphiphiles increased potassium efflux and passive potassium influx. The increase in the fluxes was about the same in both directions through the membrane and there were no clear differences in the effects of the different amphiphilic derivatives at equi-protecting concentrations. Active potassium influx was decreased by cationic, zwitterionic and non-ionic amphiphiles. The ability of the amphiphiles to inhibit the influx was not related to the length of the alkyl chain. Anionic amphiphiles had no or only a weak stimulatory effect on the influx. Phosphate efflux was reduced by all the amphiphiles. The inhibitory potency of the different amphiphiles decreased in the following order; anionic greater than zwitterionic, non-ionic greater than cationic. Short-chained amphiphiles were more potent inhibitors than long-chained. The possible participation of non-bilayer phases (mixed inverted micelles) in the intercalation of amphiphiles into the membrane is discussed.  相似文献   

3.
Potent antihaemolytic and shape transforming amphiphilic compounds were studied for their ability to inhibit calmodulin-activated phosphodiesterase activity. Some echinocytogenic and stomatocytogenic amphiphiles were potent calmodulin inhibitors. The most potent echinocytogenic and stomatocytogenic amphiphiles, however, had no or only weak inhibitory effect. Our results show that there is no causal relationship between the ability of amphiphiles to induce antihaemolysis or shape transformations in erythrocytes and their ability to inhibit calmodulin-activated phosphodiesterase activity, and it is suggested that calmodulin is not involved in shape transformations induced by amphiphiles.  相似文献   

4.
A wide variety of structurally different antihaemolytic amphiphiles were tested for their ability to induce exovesiculation (acetylcholinesterase (AChE) release, transmission electron microscopic (TEM) studies), endovesiculation (fluorescein isothiocyanate conjugated dextran (FITC-dextran) internalization, TEM studies) and shape changes in human erythrocytes at concentrations where they exert maximum protection against hypotonic haemolysis. The results show that vesiculation is a common phenomenon induced by amphiphiles in erythrocytes. Sphero-echinocytogenic amphiphiles induced exovesiculation, whereas stomatocytogenic amphiphiles induced endovesiculation. The antihaemolytic potency of the amphiphiles was not related to their ability to induce exo- or endovesiculation, or to the type or extent of shape changes induced, and it could not be ascribed to any molecular feature of the amphiphiles or to their charge. It is proposed that amphiphiles, when intercalated into the lipid bilayer of the membrane, rapidly induce rearrangements within the bilayer and that these rearrangements are associated with an increase in the permeability of the membrane; it is suggested that a rapid efflux of ions decreases the difference in osmotic pressure between cell interior and hypotonic buffer, thereby protecting cells from being lysed.  相似文献   

5.
The interactions of octaethyleneglycol alkylethers (C10-C16), pentaethyleneglycol dodecylether, and dodecyl D-maltoside with the human erythrocyte membrane were studied. All the amphiphiles protected erythrocytes against hypotonic haemolysis. At concentrations where the amphiphiles protected erythrocytes against hypotonic haemolysis they reduced phosphate efflux. The potency of the amphiphiles, at equiprotecting concentrations, was correlated negatively to the length of the alkyl chain. Potassium fluxes were increased by all the amphiphiles at protective concentrations. The relative potency of the amphiphiles varied but it was not simply related to the length of the alkyl chain. The only amphiphile affecting active potassium influx was octaethyleneglycol decylether which induced a slight decrease. It is concluded that the increase in passive cation fluxes caused by the amphiphiles is due to an increased permeability of the lipid bilayer induced through a nonspecific interaction of the amphiphiles with the bilayer. The effect of the amphiphiles on ion transport mediated by membrane proteins is proposed to be due to an alteration of the state of the transporting protein.  相似文献   

6.
In order to morphologically characterize exo- and endovesicles released during treatment of erythrocytes with amphiphiles and to look for possible amphiphile-specific effects on the vesiculation pattern, human erythrocytes were treated at 37 degrees C with amphiphiles at concentrations where they exhibit maximum protection against hypotonic haemolysis (cAHmax). Released exo-and endovesicles and treated cells were studied by means of transmission (TEM) and scanning (SEM) electron microscopy. All sphero-echinocytogenic amphiphiles induced a release of both spherical and tubular exovesicles. Dodecyl maltoside, a nonionic amphiphile with a bulky polar head, induced a release of predominantly tubular exovesicles, while all other sphero-echinocytogenic amphiphiles induced a release of predominantly spherical exovesicles. Some branched tubular exovesicles were released by a double-chained cationic amphiphile. Tail- and tongue-like structures were often seen on the exovesicles. Spherical exovesicles were frequently invaginated. Stomatocytogenic amphiphiles induced endovesiculation. In erythrocytes treated with most of the stomatocytogenic amphiphiles the endovesicles were clustered, but with some amphiphiles the endovesicles were randomly distributed. Large ringformed endovesicles (octaethyleneglycol alkyl ethers) and endovesicles in chains (octyl and decyl glucopyranoside) also occurred. The endovesicle membrane was often budding onto the lumen of the vesicle and in some cases this could ultimately lead to a vesicle inside the endovesicle. We conclude that amphiphiles do not only trigger vesiculation, but may also specifically affect the vesiculation processes.  相似文献   

7.
Amphiphiles which induce either spiculated (echinocytic) or invaginated (stomatocytic) shapes in human erythrocytes, and ionophore A23187 plus Ca(2+), were studied for their capacity to induce shape alterations, vesiculation and hemolysis in the morphologically and structurally different lamprey and trout erythrocytes. Both qualitative and quantitative differences were found. Amphiphiles induced no gross morphological changes in the non-axisymmetric stomatocyte-like lamprey erythrocyte or in the flat ellipsoidal trout erythrocyte, besides a rounding up at higher amphiphile concentrations. No shapes with large broad spicula were seen. Nevertheless, some of the 'echinocytogenic' amphiphiles induced plasma membrane protrusions in lamprey and trout erythrocytes, from where exovesicles were shed. In trout erythrocytes, occurrence of corrugations at the cell rim preceded protrusion formation. Other 'echinocytogenic' amphiphiles induced invaginations in lamprey erythrocytes. The 'stomatocytogenic' amphiphiles induced invaginations in both lamprey and trout erythrocytes. Surprisingly, in trout erythrocytes, some protrusions also occurred. Some of the amphiphiles hemolyzed lamprey, trout and human erythrocytes at a significantly different concentration/membrane area. Ionophore A23187 plus Ca(2+) induced membrane protrusions and sphering in human and trout erythrocytes; however, the lamprey erythrocyte remained unperturbed. The shape alterations in lamprey erythrocytes, we suggest, are characterized by weak membrane skeleton-lipid bilayer interactions, due to band 3 protein and ankyrin deficiency. In trout erythrocyte, the marginal band of microtubules appears to strongly influence cell shape. Furthermore, the presence of intermediate filaments and nuclei, additionally affecting the cell membrane shear elasticity, apparently influences cell shape changes in lamprey and trout erythrocytes. The different types of shape alterations induced by certain amphiphiles in the cell types indicates that their plasma membrane phospholipid composition differs.  相似文献   

8.
Gemini (dimeric) surfactant perturbation of the human erythrocyte   总被引:1,自引:0,他引:1  
We studied the ability of di-cationic gemini surfactantsdi (amphiphiles), i.e. 1,4-butanediammonium-N,N-dialkyl-N,N,N',N'-tetramethyl bromides (Di-Cm-di-QAS (s = 4), where m = 8, 11, 13, 16 and s = the number of alkyl groups in the spacer) to induce shape alteration, vesiculation, haemolysis and phosphatidylserine exposure in human erythrocytes, and to protect erythrocytes against hypotonic haemolysis. At high sublytic concentrations the Di-Cm-di-QAS (s = 4) amphiphiles rapidly induced echinocytic (spiculated) shapes and a release of exovesicles, mainly in the form of tubes, from the cell surface. Following 60 min incubation erythrocytes were sphero-echinocytic and a few cells with invaginations/endovesicles were observed. No phosphatidylserine exposure was detected. The haemolytic potency increased with an increase of the alkyl chain length. At sublytic concentrations the Di-Cm-di-QAS (s = 4) amphiphiles protected erythrocytes against hypotonic haemolysis. It is suggested that the Di-Cm-di-QAS (s = 4) amphiphiles perturb the membrane in a similar way as single-chain cationic amphiphiles, but that they do not easily translocate to the inner membrane leaflet.  相似文献   

9.
Incorporation and translocation of aminophospholipids in human erythrocytes   总被引:9,自引:0,他引:9  
D L Daleke  W H Huestis 《Biochemistry》1985,24(20):5406-5416
Cell morphology changes are used to examine the interaction of exogenous phosphatidylserine and phosphatidylethanolamine with human erythrocytes. Short-chain saturated lipids transfer from liposomes to cells, inducing shape changes that are indicative of their incorporation into, and in some cases translocation across, the cell membrane bilayer. Dioleoylphosphatidylserine and low concentrations of dilauroyl- and dimyristoylphosphatidylserine induce stomatocytosis. At higher concentrations, dilauroylphosphatidylserine and dimyristoylphosphatidylserine induce a biphasic shape change: the cells crenate initially but rapidly revert to a discocytic and eventually stomatocytic shape. The extent of these shape changes is dose dependent and increases with increasing hydrophilicity of the phospholipid. Cells treated with dilauroylphosphatidylethanolamine and bovine brain lysophosphatidylserine exhibit a similar biphasic shape change but revert to discocytes rather than stomatocytes. These shape changes are not a result of vesicle--cell fusion nor can they be accounted for by cholesterol depletion. The reversion from crenated to stomatocytic forms is dependent on intracellular ATP and Mg2+ concentrations and the state of protein sulfhydryl groups. The present results are consistent with the existence of a Mg2+- and ATP-dependent protein in erythrocytes that selectively translocates aminophospholipids to the membrane inner monolayer engendering aminophospholipid asymmetry.  相似文献   

10.
Nonionic and anionic water-soluble amphiphiles were shown to increase strongly the binding of fluorescein isothiocyanate-conjugated annexin V (FITC-annexin V) in human erythrocytes pretreated with the aminophospholipid translocase (APLT) inhibitor n-ethylmaleimide (NEM). At high sublytic amphiphile-concentrations the binding of FITC-annexin V, monitored in a flow cytometer, was time -and temperature-dependent and occurred heterogeneously in the cell population, with 43-81% of cells being stained above background following incubation for 60 minutes at 37°C. The increased FITC-annexin V binding apparently indicates an increased flop rate of phosphatidylserine (PS) to the outer membrane leaflet. When the NEM-pretreatment was omitted, the FITC-annexin V binding was markedly, but not completely, reduced. In erythrocytes incubated with a zwitter-ionic amphiphile, a small increase in FITC-annexin V binding was detected, while cationic amphiphiles did not induce an increased FITC-annexin V binding. The potency of amphiphiles to induce PS exposure was not related to the type of shape alteration or vesiculation induced. Our results indicate a significant role of the charge status of a membrane intercalated amphiphile for its capability to induce PS exposure.  相似文献   

11.
Cationic amphiphiles used for transfection can be incorporated into biological membranes. By differential scanning calorimetry (DSC), cholesterol solubilization in phospholipid membranes, in the absence and presence of cationic amphiphiles, was determined. Two different systems were studied: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)+cholesterol (1:3, POPC:Chol, molar ratio) and 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-l-serine] (POPS)+cholesterol (3:2, POPS:Chol, molar ratio), which contain cholesterol in crystallite form. For the zwitterionic lipid POPC, cationic amphiphiles were tested, up to 7 mol%, while for anionic POPS bilayers, which possibly incorporate more positive amphiphiles, the fractions used were higher, up to 23 mol%. 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and DOTAP in methyl sulfate salt form (DOTAPmss) were found to cause a small decrease on the enthalpy of the cholesterol transition of pure cholesterol aggregates, possibly indicating a slight increase on the cholesterol solubilization in POPC vesicles. With the anionic system POPS:Chol, the cationic amphiphiles dramatically change the cholesterol crystal thermal transition, indicating significant changes in the cholesterol aggregates. For structural studies, phospholipids spin labeled at the 5th or 16th carbon atoms were incorporated. In POPC, at the bilayer core, the cationic amphiphiles significantly increase the bilayer packing, decreasing the membrane polarity, with the cholesterol derivative 3 beta-[N-(N',N'-dimethylaminoethane)-carbamoyl]-cholesterol (DC-chol) displaying a stronger effect. In POPS and POPS:Chol, DC-chol was also found to considerably increase the bilayer packing. Hence, exogenous cationic amphiphiles used to deliver nucleic acids to cells can change the bilayer packing of biological membranes and alter the structure of cholesterol crystals, which are believed to be the precursors to atherosclerotic lesions.  相似文献   

12.
The transbilayer diffusion of unlabeled ceramides with different acyl chains (C6-Cer, C10-Cer, and C16-Cer) was investigated in giant unilamellar vesicles (GUVs) and in human erythrocytes. Incorporation of a very small percentage of ceramides (approximately 0.1% of total lipids) to the external leaflet of egg phosphatidylcholine GUVs suffices to trigger a shape change from prolate to pear shape vesicle. By observing the reversibility of this shape change the transmembrane diffusion of lipids was inferred. We found a half-time for unlabeled ceramide flip-flop below 1 min at 37 degrees C. The rapid diffusion of ceramides in a phosphatidylcholine bilayer was confirmed by flip-flop experiments with a spin-labeled ceramide analogue incorporated into large unilamellar vesicles. Shape change experiments were also carried out with human erythrocytes to determine the trans-membrane diffusion of unlabeled ceramides into a biological membrane. Addition of exogenous ceramides to the external leaflet of human erythrocytes did not trigger echinocyte formation immediately as one would anticipate from an asymmetrical accumulation of new amphiphiles in the outer leaflet but only after approximately 15 min of incubation at 20 degrees C in the presence of an excess of ceramide. We interpret these data as being indicative of a rapid ceramide equilibration between both erythrocyte leaflets as indicated also by electron spin resonance spectroscopy with a spin-labeled ceramide. The late appearance of echinocytes could reveal a progressive trapping of a fraction of the ceramide molecules in the outer erythrocytes leaflet. Thus, we cannot exclude the trapping of ceramides into plasma membrane domains.  相似文献   

13.
Discocytic human red cells undergo discocyte-echinocyte and discocytestomatocyte transformations under the action of a wide variety of lipid-soluble anionic and cationic agents respectively. These shape transformations are explained by the bilayer couple hypothesis of Sheetz and Singer to be the result of preferential distribution of the anionic agents in the outer half of the bilayer and the cationic agents in the inner half of the bilayer. We demonstrate that echinocytogenic effects indeed occur when the naturally occurring phospholipid lysophosphatidylcholine (LPC) is localized in the outer half of the bilayer, and stomatocytogenic effects occur when LPC is in the inner half. However, in contrast to the bilayer couple hypothesis, our results show that simple equivalent membrane surface area expansion on each layer is insufficient to maintain the discocytic shape and there exists a differential concentration effect of LPC on the two halves of the bilayer.  相似文献   

14.
A possible physical explanation of the echinocyte-spheroechinocyte red blood cell (RBC) shape transformation induced by the intercalation of amphiphilic molecules into the outer layer of the RBC plasma membrane bilayer is given. The stable RBC shape is determined by the minimization of the membrane elastic energy, consisting of the bilayer bending energy, the bilayer relative stretching energy and the skeleton shear elastic energy. It is shown that for a given relative cell volume the calculated number of echinocyte spicula increases while their size decreases as the number of the intercalated amphiphilic molecules in the outer layer of the cell membrane bilayer is increased, which is in agreement with experimental observations. Further, it is shown that the equilibrium difference between the outer and the inner membrane leaflet areas of the stable RBC shapes increases if the amount of the intercalated amphiphiles is increased, thereby verifying theoretically the original bilayer couple hypothesis of Sheetz and Singer (1974) and Evans (1974). Received: 22 August 1997 / Revised version: 25 November 1997 / Accepted: 11 February 1998  相似文献   

15.
The human erythrocyte membrane skeleton may be an ionic gel   总被引:3,自引:0,他引:3  
In the first paper in this series (Stokke et al. Eur Biophys J 1986, 13:203-218) we developed the general theory of the mechanochemical properties and the elastic free energy of the protein gel--lipid bilayer membrane model. Here we report on an extensive numerical analysis of the human erythrocyte shapes and shape transformations predicted by this new cell membrane model. We have calculated the total elastic free energy of deformation of four different cell shape classes: disc-shaped cells, cup-shaped cells, crenated cells, and cells with membrane invaginations. We find that which of these shape classes is favoured depends strongly on the spectrin gel osmotic tension, IIGu, and the surface tensions, IIEu and IIPu, of the extracellular and protoplasmic halves of the membrane lipid bilayer, respectively. For constant ratio IIEu/IIPu greater than O large negative or positive values of IIGu favour respectively the crenated and invaginated cell shape classes. For small absolute values of IIGu, IIEu, and IIPu, biconcave or cup-shaped cells are the stable ones. Our numerical analysis shows that the higher the membrane skeleton compressibility is, the smaller are the values of IIGu needed to induce cell shape transformation. We find that the stable and metastable shapes of discocytes and stomatocytes generally depend both on the shape of the stressfree membrane skeleton and the membrane skeleton compressibility.  相似文献   

16.
Electric field pulses >2-3 kV cm1 long known to induce membrane poration and fusion of erythrocytes as well as to enhance the transbilayer mobility of phospholipids and to perturb aminophospholipid asymmetry, are shown to induce, at 0 C., transformation of the discocytic cells into echinocytes and spheroechinocytes. The extent of transformation increases with strength, duration and number of pulses. Its time course is biphasic., a major rapid phase (t/2 ~ 5 s) being followed by a minor one, lasting for 2-3 h. Shape transformation goes along with the exofacial exposure of phosphatidylserine (PS), detected by FITC-annexin V binding and quantified by a calibration curve established via externally inserted dilauroylphosphatldylserine. Incubation of these echinocytes at 37 C leads to a rapid recovery of the discocytic shape followed by slower formation of stomatocytes. Shape recovery is temperature dependent (Ea ~100 kJ/mol), and can be impaired by depletion of ATP or Mg++ and by addition of vanadate or fluoride. Shape recovery and stomatocyte formation go along with a rapid loss of annexin binding in about 45% of the cells while the rest maintains its binding capacity. In the presence of vanadate, annexin binding increases in all cells. The results are discussed in the light of the bilayer couple concept of erythrocyte shape and the enhanced transverse mobility of phospholipids. Echinocyte formation is most likely caused by the reorientation of endofacial aminopho-spholipids to the outer leaflet of the bilayer. Shape recovery and stomatocyte formation probably result from a continuous reinternalization of PS via the ATP dependent aminophospholipid translocase, but may also be supported by downhill movement of PC to the inner leaflet and by other yet unidentified processes.  相似文献   

17.
As shown in earlier work (M.M. Henszen et al., Mol. Membr. Biol. 14 (1997) 195-204), exposure of erythrocytes to single brief electric field pulses (5-7 kV cm(-1)) enhances the transbilayer mobility of phospholipids and produces echinocytes which can subsequently be transformed into stomatocytes in an ATP-dependent process. These shape transformations arise from partly reversible changes of the transbilayer disposition of phospholipids, in agreement with the bilayer couple concept. Extensive membrane modification by repetitive (相似文献   

18.
Cationic amphiphiles used for transfection can be incorporated into biological membranes. By differential scanning calorimetry (DSC), cholesterol solubilization in phospholipid membranes, in the absence and presence of cationic amphiphiles, was determined. Two different systems were studied: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) + cholesterol (1:3, POPC:Chol, molar ratio) and 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-l-serine] (POPS) + cholesterol (3:2, POPS:Chol, molar ratio), which contain cholesterol in crystallite form. For the zwitterionic lipid POPC, cationic amphiphiles were tested, up to 7 mol%, while for anionic POPS bilayers, which possibly incorporate more positive amphiphiles, the fractions used were higher, up to 23 mol%. 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and DOTAP in methyl sulfate salt form (DOTAPmss) were found to cause a small decrease on the enthalpy of the cholesterol transition of pure cholesterol aggregates, possibly indicating a slight increase on the cholesterol solubilization in POPC vesicles. With the anionic system POPS:Chol, the cationic amphiphiles dramatically change the cholesterol crystal thermal transition, indicating significant changes in the cholesterol aggregates. For structural studies, phospholipids spin labeled at the 5th or 16th carbon atoms were incorporated. In POPC, at the bilayer core, the cationic amphiphiles significantly increase the bilayer packing, decreasing the membrane polarity, with the cholesterol derivative 3β-[N-(N′,N′-dimethylaminoethane)-carbamoyl]-cholesterol (DC-chol) displaying a stronger effect. In POPS and POPS:Chol, DC-chol was also found to considerably increase the bilayer packing. Hence, exogenous cationic amphiphiles used to deliver nucleic acids to cells can change the bilayer packing of biological membranes and alter the structure of cholesterol crystals, which are believed to be the precursors to atherosclerotic lesions.  相似文献   

19.
The natural triterpene betulinic acid and its analogues (betulinic aldehyde, lupeol, betulin, methyl betulinate and betulinic acid amide) caused concentration-dependent alterations of erythrocyte membrane shape towards stomatocytes or echinocytes according to their hydrogen bonding properties. Thus, the analogues with a functional group having a capacity of donating a hydrogen bond (COOH, CH(2)OH, CONH(2)) caused formation of echinocytes, whereas those lacking this ability (CH(3), CHO, COOCH(3)) induced formation of stomatocytes. Both kinds of erythrocyte alterations were prohibitive with respect to Plasmodium falciparum invasion and growth; all compounds were inhibitory with IC(50) values in the range 7-28 microM, and the growth inhibition correlated well with the extent of membrane curvature changes assessed by transmission electron microscopy. Erythrocytes pre-loaded with betulinic acid or its analogues and extensively washed in order to remove excess of the chemicals could not serve as hosts for P. falciparum parasites. Betulinic acid and congeners can be responsible for in vitro antiplasmodial activity of plant extracts, as shown for Zataria multiflora Boiss. (Labiatae) and Zizyphus vulgaris Lam. (Rhamnaceae). The activity is evidently due to the incorporation of the compounds into the lipid bilayer of erythrocytes, and may be caused by modifications of cholesterol-rich membrane rafts, recently shown to play an important role in parasite vacuolization. The established link between erythrocyte membrane modifications and antiplasmodial activity may provide a novel target for potential antimalarial drugs.  相似文献   

20.
Isolated human erythrocyte membranes crenate when suspended in isotonic medium, but can use MgATP to reduce their net positive curvature, yielding smooth discs and cup forms that eventually undergo endocytosis. An earlier report from this laboratory (Patel, V.P. and Fairbanks, G. (1981) J. Cell Biol. 88, 430-440), has described a phenomenon of ATP-independent shape change in which ghosts prepared by hemolysis and washing in synthetic zwitterionic buffers crenated at 0 degree C, but underwent conversion to smooth discs and cups when warmed in the absence of MgATP. We have further explored the effect of the hemolysis condition on the requirement for ATP in ghost shape change. 25 hemolysis buffers were applied at 10 mM (pH 7.4, 0 degree C). Eight anionic buffers with relatively high ionic strength (e.g., phosphate and diethylmalonic acid (DMA] yielded ghosts requiring ATP for shape change, while two cationic buffers (Bistris and imidazole) and ten synthetic zwitterionic buffers (e.g., Tricine and Hepes) with lower ionic strength produced ghosts that smoothed spontaneously at 30 degrees C. Hemolysis at intermediate ionic strength yielded mixed populations in which spontaneous smoothing was expressed in all-or-none fashion. Maximal ATP-independent shape change was induced by hemolysis at pH 7.3-7.7, while ATP was required after hemolysis at pH less than or equal to 7.1 even when the ionic strength at hemolysis was low. Ghosts requiring ATP could be converted to ATP independence by washing at low ionic strength, but ATP independence could not be reversed readily by washing at high ionic strength. Exposure to low ionic strength at pH greater than 7.1 presumably changes membrane organization in a way that alters the temperature dependence of tensions within the bilayer or skeleton of the composite membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号