共查询到20条相似文献,搜索用时 15 毫秒
1.
The photocycle of the photophobic receptor sensory rhodopsin II from N. pharaonis was analyzed by varying measuring wavelengths, temperature, and pH, and by exchanging H2O with D2O. The data can be satisfactorily modeled by eight exponents over the whole range of modified parameters. The kinetic data support a model similar to that of bacteriorhodopsin (BR) if a scheme of irreversible first-order reactions is assumed. Eight kinetically distinct protein states can then be identified. These states are formed from five spectrally distinct species. The chromophore states Si correspond in their spectral properties to those of the BR photocycle, namely pSRII510 (K), pSRII495 (L), pSRII400 (M), pSRII485 (N), and pSRII535 (O). In comparison to BR, pSRII400 is formed approximately 10 times faster than the M state; however, the back-reaction is almost 100 times slower. Comparison of the temperature dependence of the rate constants with those from the BR photocycle suggests that the differences are caused by changes of DeltaS. The rate constants of the pSRII photocycle are almost insensitive to the pH variation from 9.0 to 5.5, and show only a small H2O/D2O effect. This analysis supports the idea that the conformational dynamics of pSRII controls the kinetics of the photocycle of pSRII. 相似文献
2.
Sensory rhodopsin II (NpSRII) from Natronobacterium pharaonis was studied by resonance Raman (RR) spectroscopic techniques. Using gated 413-nm excitation, time-resolved RR measurements of the solubilized photoreceptor were carried out to probe the photocycle intermediates that are formed in the submillisecond time range. For the first time, two M-like intermediates were identified on the basis of their C=C stretching bands at 1568 and 1583 cm(-1), corresponding to the early M(L)(400) state with a lifetime of 30 micro s and the subsequent M(1)(400) state with a lifetime of 2 ms, respectively. The unusually high C=C stretching frequency of M(1)(400) has been attributed to an unprotonated retinal Schiff base in a largely hydrophobic environment, implying that the M(L)(400) --> M(1)(400) transition is associated with protein structural changes in the vicinity of the chromophore binding pocket. Time-resolved surface enhanced resonance Raman experiments of NpSRII electrostatically bound onto a rotating Ag electrode reveal that the photoreceptor runs through the photocycle also in the immobilized state. Surface enhanced resonance Raman spectra are very similar to the RR spectra of the solubilized protein, ruling out adsorption-induced structural changes in the retinal binding pocket. The photocycle kinetics, however, is sensitively affected by the electrode potential such that at 0.0 V (versus Ag/AgCl) the decay times of M(L)(400) and M(1)(400) are drastically slowed down. Upon decreasing the potential to -0.4 V, that corresponds to a decrease of the interfacial potential drop and thus of the electric field strength at the protein binding site, the photocycle kinetics becomes similar to that of NpSRII in solution. The electric-field dependence of the protein structural changes associated with the M-state transitions, which in the present spectroscopic work is revealed on a molecular level, appears to be related to the electric-field control of bacteriorhodopsin's photocycle, which has been shown to be of functional relevance. 相似文献
3.
Natronobacterium pharaonis phoborhodopsin (ppR; also called N. pharaonis sensory rhodopsin II, NpsRII) is a photophobic sensor in N. pharaonis, and has a shorter absorption maximum (lambdamax, 500 nm) than those of other archaeal retinal proteins (lambdamax, 560-590 nm) such as bacteriorhodopsin (bR). We constructed chimeric proteins between bR and ppR to investigate the long range interactions effecting the color regulation among archaeal retinal proteins. The lambdamax of B-DEFG/P-ABC was 545 nm, similar to that of bR expressed in Escherichia coli (lambdamax, 550 nm). B-DEFG/P-ABC means a chimera composed of helices D, E, F, and G of bR and helices A, B, and C of ppR. This indicates that the major factor(s) determining the difference in lambdamax between bR and ppR exist in helices DEFG. To specify the more minute regions for the color determination between bR and ppR, we constructed 15 chimeric proteins containing helices D, E, F, and G of bR. According to the absorption spectra of the various chimeric proteins, the interaction between helices D and E as well as the effect of the hydroxyl group around protonated Schiff base on helix G (Thr-204 for ppR and Ala-215 for bR) are the main factors for spectral tuning between bR and ppR. 相似文献
4.
In many retinal proteins the proton transfer from the Schiff base to the counterion represents a functionally important step of the photoreaction. In the signaling state of sensory rhodopsin II from Natronobacterium pharaonis this transfer has already occurred, but in the counterion mutant Asp75Asn it is blocked during all steps of the photocycle. Therefore, the study of the molecular changes during the photoreaction of this mutant should provide a deeper understanding of the activation mechanism, and for this, we have applied time-resolved step-scan FTIR spectroscopy. The photoreaction is drastically altered; only red-shifted intermediates are formed with a chromophore strongly twisted around the 14-15 single bond. In addition, the photocycle is shortened by 2 orders of magnitude. Nevertheless, a transition involving only protein changes similar to that of the wild type is observed, which has been correlated with the formation of the signaling state. However, whereas in the wild type this transition occurs in the millisecond range, it is shortened to 200 micros in the mutant. The results are discussed with respect to the altered electrostatic interactions, role of proton transfer, the published 3D structure, and physiological activity. 相似文献
6.
We report here the resonance Raman spectra of octopus rhodopsin and its photoproducts, bathorhodopsin and acid metarhodopsin. These studies were undertaken in order to make comparisons with the well-studied bovine pigments, so as to understand the similarities and the differences in pigment structure and photochemical processes between vertebrates and invertebrates. The flow method was used to obtain the Raman spectrum of rhodopsin at 13 degrees C. The bathorhodopsin spectrum was obtained by computer subtraction of the spectra containing different photostationary mixtures of rhodopsin, isorhodopsin, hypsorhodopsin, and bathorhodopsin, obtained at 12 K using the pump-probe technique and from measurements at 80 K. Like their bovine counterparts, the Schiff base vibrational mode appears at approximately 1660 cm-1 in octopus rhodopsin and the photoproducts, bathorhodopsin and acid metarhodopsin, suggesting a protonated Schiff base linkage between the chromophore and the protein. Differences between the Raman spectra of octopus rhodopsin and bathorhodopsin indicate that the formation of bathorhodopsin is associated with chromophore isomerization. This inference is substantiated by the chromophore chemical extraction data which show that, like the bovine system, octopus rhodopsin is an 11-cis pigment, while the photoproducts contain an all-trans pigment, in agreement with previous work. The octopus rhodopsin and bathorhodopsin spectra show marked differences from their bovine counterparts in other respects, however. The differences are most dramatic in the structure-sensitive fingerprint and the HOOP regions. Thus, it appears that although the two species differ in the specific nature of the chromophore-protein interactions, the general process of visual transduction is the same. 相似文献
7.
The early steps in the photocycle of the aspartate 75-mutated sensory rhodopsin II from Natrobacterium pharaonis (pSRII-D75N) were studied by time-resolved laser-induced optoacoustic spectroscopy combined with quantum yield determinations by flash photolysis with optical detection. Similar to the case of pSRII-WT, excitation of pSRII-D75N produces in subnanosecond time a K-like intermediate. Different to the case of K in pSRII-WT, in pSRII-D75N there are two K states. K(E) decays into K(L) with a lifetime of 400 ns (independent of temperature in the range 6.5-52 degrees C) which is optically silent under the experimental conditions of our transient absorption experiments. This decay is concomitant with an expansion of 6.5 ml/mol of produced intermediate. This indicates a protein relaxation not affecting the chromophore absorption. For pSRII-D75N reconstituted into polar lipids from purple membrane, the mutation of Asp-75 by the neutral residue Asn affects neither the K(E) production yield (PhiK(e) 0.51 +/- 0.05) nor the energy stored by this intermediate (E(E)K(E) = 91 +/- 11 kJ/mol), nor the expansion upon its production (DeltaV(R,1) = 10 +/- 0.3 ml/mol). All these values are very similar to those previously determined for K with pSRII-WT in the same medium. The millisecond transient species is attributed to K(L) with a lifetime corresponding to that determined by electronic absorption spectroscopy for K(565). The determined energy content of the intermediates as well as the structural volume changes for the various steps afford the calculation of the free energy profile of the phototransformation during the pSRII-D75N photocycle. These data offer insights regarding the photocycle in pSRII-WT. Detergent solubilization of pSRII-D75N affects the sample properties to a larger extent than in the case of pSRII-WT. 相似文献
8.
We describe the preparation and properties of lipodisc nanoparticles–lipid membrane fragments with a diameter of about 10 nm, stabilized by amphiphilic synthetic polymer molecules. We used the lipodisc nanoparticles made of Escherichia coli polar lipids and compared lipodisc nanoparticles that contained the photosensitive protein complex of the sensory rhodopsin with its cognate transducer from the halobacterium Natronomonas pharaonis with empty lipodisc nanoparticles that contained no protein. The lipodisc nanoparticles were characterized by dynamic light scattering, transmission electron microscopy and atomic force microscopy. We found that the diameter of lipodisc nanoparticles was not affected by incorporation of the protein complexes, which makes them a prospective platform for single-molecule studies of membrane proteins. 相似文献
9.
Bacteriorhodopsin (BR) from Halobacterium salinarum as well as halorhodopsin (pHR) and sensory rhodopsin II (pSRII) from Natronobacterium pharaonis were functionally expressed in E. coli using the method of Shimono et al. [FEBS Lett. (1997) 420, 54–56]. The histidine tagged proteins were purified with yields up to 1.0 mg/l cell culture and characterized by ESI mass spectrometry and their photocycle. The pSRII and pHR photocycles were indistinguishable from the wild type proteins. The BR photocycle was considerably prolonged. pSOII is located in the cytoplasmic membrane and the C-terminus is oriented towards the cytoplasm as determined by immunogold labelling. 相似文献
10.
Sensory rhodopsin II (also called phoborhodopsin) from the archaeal Natronobacterium pharaonis (pSRII) functions as a repellent phototaxis receptor. The excitation of the receptor by light triggers the activation of a transducer molecule (pHtrII) which has close resemblance to the cytoplasmic domain of bacterial chemotaxis receptors. In order to elucidate the first step of the signal transduction chain, the accessibility as well as static and transient mobility of cytoplasmic residues in helices F and G were analysed by electron paramagnetic resonance spectroscopy. The results indicate an outward tilting of helix F during the early steps of the photocycle which is sustained until the reformation of the initial ground state. Co-expression of pSRII with a truncated fragment of pHtrII affects the accessibility and/or the mobility of certain spin-labelled residues on helices F and G. The results suggest that these sites are located within the binding surface of the photoreceptor with its transducer. 相似文献
11.
Pharaonis phoborhodopsin (ppR, or pharaonis sensory rhodopsin II, NpsRII) is a sensor for the negative phototaxis of Natronomonas (Natronobacterium) pharaonis. Arginine 72 of ppR corresponds to Arg-82 of bacteriorhodopsin, which is a highly conserved residue among microbial rhodopsins. Using various Arg-72 ppR mutants, we obtained the following results: 1). Arg-72(ppR) together possibly with Asp-193 influenced the pK(a) of the counterion of the protonated Schiff base. 2). The M-rise became approximately four times faster than the wild-type. 3). Illumination causes proton uptake and release, and the pH profiles of the sequence of these two proton movements were different between R72A mutant and the wild-type; it is inferred that Arg-72 connects the proton transfer events occurring at both the Schiff base and an extracellular proton-releasing residue (Asp-193). 4). The M-decays of Arg-72 mutants were faster ( approximately 8-27 folds at pH 8 depending on mutants) than the wild-type, implying that the guanidinium prevents the proton transfer from the extracellular space to the deprotonated Schiff base. 5), The proton-pumping activities were decreased for mutants having increased M-decay rates, but the extent of the decrease was smaller than expected. The role of Arg-72 of ppR on the photochemistry was discussed. 相似文献
12.
Pharaonis phoborhodopsin (ppR; also pharaonis sensory rhodopsin II, psRII) is a receptor of the negative phototaxis of Natronobacterium pharaonis. By spectroscopic titration of D193N and D193E mutants, the pK(a) of the Schiff base was evaluated. Asp193 corresponds to Glu204 of bacteriorhodopsin (bR). The pK(a) of the Schiff base (SBH(+)) of D193N was approximately 10.1-10.0 (at XH(+)) and approximately 11.4-11.6 (at X) depending on the protonation state of a certain residue (designated by X) and independent of Cl(-), whereas those of the wild type and D193E were >12. The pK(a) values of XH(+) were approximately 11.8-11.2 at the state of SB, 10.5 at SBH(+) state in the presence of Cl(-), and 9.6 at SBH(+) without Cl(-). These imply the presence of a long-range interaction in the extracellular channel. Asp193 was suggested to be deprotonated in the present dodecyl-maltoside (DDM) solubilized wild-type ppR, which is contrary to Glu204 of bR. In the absence of salts, the irreversible denaturation of D193N (but not the wild type and D193E) occurred via a metastable state, into which the addition of Cl(-) reversed the intact pigment. This suggests that the negative charge at residue 193, which can be substituted by Cl(-), is necessary to maintain the proper conformation in the DDM-solubilized ppR. 相似文献
13.
pharaonis phoborhodopsin (ppR, also called pharaonis sensory rhodopsin II, psRII) is a photo-receptor for negative phototaxis in Natronobacterium pharaonis. During the photoreaction cycle (photocycle), ppR exhibits intraprotein proton movements, resulting in proton pumping from the cytoplasmic to the extracellular side, although it is weak. In this study, light-induced proton uptake and release of ppR reconstituted with phospholipid were analyzed using a SnO(2) electrode. The reconstituted ppR exhibited properties in proton uptake and release that are different from those of dodecyl maltoside solubilized samples. It showed fast proton release before the decay of ppR(M) (M-photointermediate) followed by proton uptake, which was similar to that of bacteriorhodopsin (BR), a light-driven proton pump. Mutant analysis assigned Asp193 to one (major) of the members of the proton-releasing group (PRG). Fast proton release was observed only when the pH was approximately 5-8 in the presence of Cl(-). When Cl(-) was replaced with SO(4)(2-), the reconstituted ppR did not exhibit fast proton release at any pH, suggesting Cl(-) binding around PRG. PRG in BR consists of Glu204 (Asp193 in ppR) and Glu194 (Pro183 in ppR). Replacement of Pro183 by Glu/Asp, a negatively charged residue, led to Cl(-)-independent fast proton release. The transducer binding affected the properties of PRG in ppR in the ground state and in the ppR(M) state, suggesting that interaction with the transducer extends to the extracellular surface of ppR. Differences and similarities in the molecular mechanism of the proton movement between ppR and BR are discussed. 相似文献
14.
Resonance Raman spectroscopy may yield precise information on the conformation of, and on the interactions assumed by, the chromophores involved in the first steps of the photosynthetic process, whether isolated in solvents, embedded in soluble or membrane proteins, or, as shown recently, in vivo. By making use of this technique, it is possible, for instance, to relate the electronic properties of these molecules to their structure and/or the physical properties of their environment, or to determine subtle changes of their conformation associated with regulatory processes. After a short introduction to the physical principles that govern resonance Raman spectroscopy, the information content of resonance Raman spectra of chlorophyll and carotenoid molecules is described in this review, together with the experiments which helped in determining which structural parameter each Raman band is sensitive to. A selection of applications of this technique is then presented, in order to give a fair and precise idea of which type of information can be obtained from its use in the field of photosynthesis. 相似文献
15.
The photocycle kinetics of halorhodopsin from Natronobacterium pharaonis (pHR(575)) was analyzed at different temperatures and chloride concentrations as well as various halides. Over the whole range of modified parameters the kinetics can be adequately modeled with six apparent rate constants. Assuming a model in which the observed rates are assigned to irreversible transitions of a single relaxation chain, six kinetically distinguishable states (P(1-6)) are discernible that are formed from four chromophore states (spectral archetypes S(j): K(570), L(N)(520), O(600), pHR'(575)). Whereas P(1) coincides with K(570) (S(1)), both P(2) and P(3) have identical spectra resembling L(520) (S(2)), thus representing a true spectral silent transition between them. P(4) constitutes a fast temperature-dependent equilibrium between the chromophore states S(2) and S(3) (L(520) and O(600), respectively). The subsequent equilibrium (P(5)) of the same spectral archetypes is only moderately temperature dependent but shows sensitivity toward the type of anion and the chloride concentration. Therefore, S(2) and S(3) occurring in P(4) as well as in P(5) have to be distinguished and are assigned to L(520)<--> O(1)(600) and O(2)(600)<--> N(520) equilibrium, respectively. It is proposed that P(4) and P(5) represent the anion release and uptake steps. Based on the experimental data affinities of the halide binding sites are estimated. 相似文献
16.
Pharaonis halorhodopsin is a light-driven transport system for chloride, similarly to the previously described halorhodopsin, but we find that it transports nitrate as effectively as chloride. We studied the photoreactions of the purified, detergent-solubilized pharaonis pigment with a gated multichannel analyzer. At a physiological salt concentration (4 M NaCl), the absorption spectra and rate constants of rise and decay for intermediates of the photocycle were similar to those for halorhodopsin. In buffer containing nitrate, halorhodopsin exhibits a second, truncated photocycle; this difference in the photoreaction of the pigment occurs when an anion is bound in such a way as to preclude transport. As expected from the lack of anion specificity in the transport, the photocycle of pharaonis halorhodopsin was nearly unaffected by replacement of chloride with nitrate. All presumed buried positively charged residues, which might play a role in anion binding, are conserved in the two pigments. At the extracellular end of the presumed helix C, however, an arginine residue is found in halorhodopsin, but not in pharaonis halorhodopsin, and an arginine-rich segment between the presumed helices A and B in halorhodopsin is replaced by a less positively charged sequence in pharaonis halorhodopsin (Lanyi, J. K., Duschl, A., Hatfield, G. W., May, K., and Oesterhelt, D. (1990) J. Biol. Chem. 265, 1253-1260). One or both of these alterations may explain the difference in the anion selectivity of the two proteins. 相似文献
17.
Resonance Raman (RR) spectroscopy has been used to examine the configuration of the carotenoids bound to Synechocystis PCC 6803 Photosystem II (PS II) core complexes. The excitation wavelengths used (514.5, 488.0, 476.5 and 457.9 nm) span the absorption bands of all of the ~12–17 neutral carotenoids in the PS II core complex. The RR spectra of the two carotenoids associated with the D1–D2 polypeptides (Car 507 and Car 489) of the reaction center are extracted via light versus dark difference experiments measured at 20 K. The RR results are consistent with all- trans configurations for both Car 507 and Car 489 and indicate that majority of the other carotenoids in the PS II core complex must also be in the all- trans configuration. The configuration of β-carotene is relevant to its proposed function as a molecular wire in the secondary electron-transfer reactions of PS II. 相似文献
18.
The photoreceptor sensory rhodopsin II (sR-II) was enriched 120-fold from cell membranes of Halobacterium halobium. The final preparation yields sR-II with a specific content of 3 nmol of sR-II/mg of protein. The spectroscopic measurements were performed on the enriched photoreceptor solubilized in digitonin. In the absolute absorption spectrum of the partially purified receptor, the main peak in the visible range corresponded to sR-II with a maximum at 488 nm. Cytochromes contributed to the spectrum only in a minor band at 415 nm. The extinction coefficient of sR-II was estimated from difference spectra during bleaching with hydroxylamine to be 48,000 M-1 cm-1. The reduced chromophore displayed a pronounced fine structure which is due to the coplanarity of the retinyl residue. The isomeric composition of the chromophore from the enriched photoreceptor was determined in retinal extracts in HPLC. The dark-adapted sR-II contains 80% all-trans- and 20% 13-cis-retinal. After illumination, the ratio changed to 1:1, indicating a trans-cis isomerization during the photocycle of sR-II. 相似文献
19.
Resonance Raman Spectroscopy allows a selective study of the bases of DNA and therefore of the interactions of these bases with ligands. This technique is also sensitive to structural modifications. We show here that, first, the structures of native poly(dA-dT).poly(dA-dT) and poly(dA).poly(dT) are not the same and that, secondly, it is possible to characterize the B----Z transition of poly(dG-dC).poly(dG-dC). The study of the Raman hypochromism during the thermal denaturation of the polynucleotides reveals that the stacking of the adenines in poly(dA).poly(dT) is near that observed in poly(rA) but differs of this stacking in poly(dA-dT).poly(dA-dT). The enhancement of the intensity of the guanine line at 1193 cm-1 and of the cytosine lines at 780 cm-1, 1 242 cm-1 and 1268 cm-1 as well as the shift of the guanine line at low frequency should allow to characterize a small proportion of base pairs in Z form in any DNA. 相似文献
20.
In the present work the light-activated proton transfer reactions of sensory rhodopsin II from Natronobacterium pharaonis (pSRII) and those of the channel-mutants D75N-pSRII and F86D-pSRII are investigated using flash photolysis and black lipid membrane (BLM) techniques. Whereas the photocycle of the F86D-pSRII mutant is quite similar to that of the wild-type protein, the photocycle of D75N-pSRII consists of only two intermediates. The addition of external proton donors such as azide, or in the case of F86D-pSRII, imidazole, accelerates the reprotonation of the Schiff base, but not the turnover. The electrical measurements prove that pSRII and F86D-pSRII can function as outwardly directed proton pumps, whereas the mutation in the extracellular channel (D75N-pSRII) leads to an inwardly directed transient current. The almost negligible size of the photostationary current is explained by the long-lasting photocycle of about a second. Although the M decay, but not the photocycle turnover, of pSRII and F86D-pSRII is accelerated by the addition of azide, the photostationary current is considerably increased. It is discussed that in a two-photon process a late intermediate (N- and/or O-like species) is photoconverted back to the original resting state; thereby the long photocycle is cut short, giving rise to the large increase of the photostationary current. The results presented in this work indicate that the function to generate ion gradients across membranes is a general property of archaeal rhodopsins. 相似文献
|