首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Estrogen causes the cytoplasmic destabilization of albumin and gamma-fibrinogen mRNA in Xenopus laevis liver. The purpose of the present study was to determine whether mRNA destabilization is a generalized phenomenon in response to estrogen, or whether this process is restricted to a particular class of mRNAs. To address this, we have expanded our bank of serum protein-coding cDNA clones to include transferrin, the second protein of inter-alpha-trypsin inhibitor and clone 12B, for which there is no mammalian homolog. Together with albumin and gamma-fibrinogen, these represent more than 85% of the mRNAs encoding liver secreted proteins. Estrogen administration to male Xenopus or to liver explant cultures causes the generalized disappearance of all of these mRNAs. In contrast, estrogen has no effect on actin, ferritin, or poly(A)-binding protein mRNA, all of which encode intracellular proteins. We have previously demonstrated that albumin mRNA is degraded in both messenger ribonucleoprotein and polysome fractions. Sucrose gradient analysis demonstrates the same pattern for degradation of all other serum protein-coding mRNAs. Estrogen has no effect on the amounts or gradient distribution of actin, ferritin, or poly(A)-binding protein mRNA. We conclude that regulated destabilization of mRNAs encoding secreted proteins is a generalized phenomenon in response to estrogen stimulation of Xenopus liver.  相似文献   

2.
cDNA clones containing sequences complementary to Xenopus laevis albumin mRNA have been identified in a collection of cDNA clones made from poly(A)+ RNA prepared from male Xenopus laevis liver. Although all the albumin cDNA clones crosshybridise, restriction enzyme and heteroduplex analysis show that there are 2 closely related albumin mRNA sequences. The 2 albumin mRNAs are only mismatched by 8% but could be isolated by positive selection using stringent hybridization conditions. Oocytes injected with the 2 purified mRNAs, secreted either the 68,000 or 74,000 dalton albumin into the culture medium showing that the 2 albumins of X. laevis serum are encoded in the 2 closely related mRNAs. Measurements of the abundance of albumin mRNA show that the 2 albumin mRNAs together account for about 9% of total poly(A)+ RNA in male Xenopus laevis liver but the mRNA coding for the 74,000 dalton mRNA is about twice as abundant as that coding for the 68,000 dalton mRNA.  相似文献   

3.
4.
5.
Previous work from this laboratory identified a polysome-associated endonuclease whose activation by estrogen correlates with the coordinate destabilization of serum protein mRNAs. This enzyme, named polysomal ribonuclease 1, or PMR-1, is a novel member of the peroxidase gene family. A characteristic feature of PMR-1 is its ability to generate in vitro degradation intermediates by cleaving within overlapping APyrUGA elements in the 5'-coding region of albumin mRNA. The current study sought to determine whether the in vivo destabilization of albumin mRNA following estrogen administration involves the generation of decay intermediates that could be identified as products of PMR-1 cleavage. A sensitive ligation-mediated polymerase chain reaction technique was developed to identify labile decay intermediates, and its validity in identifying PMR-1-generated decay intermediates of albumin mRNA was confirmed by primer extension experiments performed with liver RNA that was isolated from estrogen-treated frogs or digested in vitro with the purified endonuclease. Ligation-mediated polymerase chain reaction was also used to identify decay intermediates from the 3'-end of albumin mRNA, and as a final proof of principle it was employed to identify in vivo decay intermediates of the c-myc coding region instability determinant corresponding to sites of in vitro cleavage by a polysome-associated endonuclease.  相似文献   

6.
Undegraded, biologically-active, polyadenylated RNA was isolated from chicken liver by a rapid, simple procedure. Liver cells were dispersed mechanically and then broken gently by controlled Dounce homogenization in the absence of detergent or ribonuclease inhibitors. After removing lysosomes and mitochondria by centrifugation, RNA was precipitated at pH 5.2. Polyadenylated mRNA was isolated directly from the detergent-solubilized precipitate by oligo(dT)-cellulose chromatography. The resulting RNA was translated into liver-specific peptides in both the wheat germ lysate and Xenopus laevis oocytes. Translatable albumin mRNA was detected in the liver cytoplasm of both fed 3-week-old chicks and unfed, day-old chicks. Translatable malic enzyme mRNA was only detected in the livers from the fed chicks.  相似文献   

7.
We have purified an approximately 60 kDa endoribonuclease from Xenopus liver polysomes with properties expected for a messenger RNase involved in the estrogen-regulated destabilization of serum protein mRNAs (Dompenciel et al., 1995, J Biol Chem 270:6108-6118). The present report describes the cloning of this protein and its identification as a novel member of the peroxidase gene family. This novel enzyme, named polysomal RNase 1, or PMR-1 has 57% sequence identity with myeloperoxidase, and like that protein, appears to be processed from a larger precursor. Unlike myeloperoxidase, however, PMR-1 lacks N-linked oligosaccharide, heme, and peroxidase activity. Western blot and immunoprecipitation experiments using epitope-specific antibodies to the derived protein sequence confirm the identity of the cloned cDNA to the protein originally isolated from polysomes. The 80 kDa pre-PMR-1 expressed in a recombinant baculovirus was not processed to the 60 kDa form in Sf9 cells and lacks RNase activity. However, the baculovirus-expressed mature 60-kDa form of the enzyme has RNase activity. The recombinant protein is an endonuclease that shows selectivity for albumin versus ferritin mRNA. While it does not cleave at consensus APyrUGA elements, recombinant PMR-1 generates the same minor cleavage products from albumin mRNA as PMR-1 purified from liver. Finally, we show estrogen induces only a small increase in the amount of PMR-1. This result is consistent with earlier data suggesting estrogen activates mRNA decay through a posttranslational pathway.  相似文献   

8.
9.
M J Ernest 《Biochemistry》1982,21(26):6761-6767
Tyrosine aminotransferase messenger ribonucleic acid (mRNA) activity in rat liver was rapidly increased 3-6-fold following in vivo administration of hydrocortisone acetate, dibutyryladenosine cyclic 3',5'-phosphate, or the protein synthesis inhibitor cycloheximide. Treatment with the steroid hormone or cyclic nucleotide in combination with cycloheximide resulted in levels of tyrosine aminotransferase mRNA 10-20-fold greater than control values. These changes in mRNA activity were not accompanied by changes in albumin mRNA or total liver template activity. The rapid decline in tyrosine aminotransferase mRNA activity following cordycepin inhibition of de novo RNA synthesis was prevented by cycloheximide treatment. This protection was not observed when pactamycin was substituted for cycloheximide, demonstrating that the inhibition of protein synthesis per se was not responsible for the stabilization of tyrosine aminotransferase mRNA. Based upon the effects of cycloheximide and pactamycin on rat liver polysome structure, it is concluded that the cycloheximide-mediated increase in tyrosine aminotransferase mRNA activity is the result of stabilization of the mRNA molecule which renders the message less susceptible to inactivation and degradation in the cytoplasm. The action of cycloheximide is very specific for tyrosine aminotransferase, phosphoenolpyruvate carboxykinase, and probably several other mRNAs that code for minor liver proteins that turn over rapidly in response to hormonal or metabolic stimuli.  相似文献   

10.
11.
C Hashimoto  J A Steitz 《Cell》1986,45(4):581-591
RNAs containing the polyadenylation sites for adenovirus L3 or E2a mRNA or for SV40 early or late mRNA are substrates for cleavage and poly(A) addition in an extract of HeLa cell nuclei. When polyadenylation reactions are probed with ribonuclease T1 and antibodies directed against either the Sm protein determinant or the trimethylguanosine cap structure at the 5' end of U RNAs in small nuclear ribonucleoproteins, RNA fragments containing the AAUAAA polyadenylation signal are immunoprecipitated. The RNA cleavage step that occurs prior to poly(A) addition is inhibited by micrococcal nuclease digestion of the nuclear extract. The immunoprecipitation of fragments containing the AAUAAA sequence can be altered, but not always abolished, by pretreatment with micrococcal nuclease. We discuss the involvement of small nuclear ribonucleoproteins in the cleavage and poly(A) addition reactions that form the 3' ends of most eukaryotic mRNAs.  相似文献   

12.
13.
14.
15.
16.
Rat liver ribonuclease P was isolated from a cytosolic fraction and shown to have optimal activity in the presence of 1 mM MgCl2 and 150-200 mM KCl using Escherchia coli pre-tRNA(Tyr) as substrate. In cesium sulfate isopycnic density gradients, the enzyme had a buoyant density of 1.36 g/ml, indicating that it is a ribonucleoprotein complex. Analysis of the RNAs in the enzyme sample purified through two successive Cs2SO4 density gradient steps revealed the copurification of two major species of RNA (RRP1 and RRP2) along with several less abundant RNAs. Rat liver ribonuclease P activity was insensitive to micrococcal nuclease pretreatment. However, the nuclease-treated preparations contained several incompletely degraded RNA species that may have been sufficient to support the ribonuclease P activity. When RNase A was substituted for micrococcal nuclease, the ribonuclease P activity was diminished by greater than 90%, suggesting the requirement for an RNA subunit for activity.  相似文献   

17.
18.
19.
Isolation of rat liver albumin messenger RNA.   总被引:4,自引:0,他引:4  
Rat liver albumin messenger RNA has been purified to apparent homogeneity by means of polysome immunoprecipitation and poly(U)-Sepharose affinity chromatography. Specific polysomes synthesizing albumin were separated from total liver polysomes through a double antibody technique which allowed isolation of a specific immunoprecipitate. The albumin-polysome immunoprecipitate was dissolved in detergent and the polysomal RNA was separated from protein by sucrose gradient centrifugation. Albumin mRNA was then separated from ribosomal RNA by affinity chromatography through the binding of poly(U)-Sepharose to the polyadenylate 3' terminus of the mRNA. Pure albumin mRNA migrated as an 18 S peak on 85% formamide-containing linear sucrose gradients and as a 22 S peak on 2.5% polyacrylamide gels in sodium dodecyl sulfate. It coded for the translation of authentic liver albumin when added to a heterologous protein-synthesizing cell-free system derived from either rabbit reticulocyte lysates or wheat germ extracts. Translation analysis in reticulocyte lysates indicated that albumin polysomes were purified approximately 9-fold from total liver polysomes, and that albumin mRNA was purified approximately 74-fold from albumin polysomal RNA. The total translation product in the mRNA-dependent wheat germ system, upon addition of the pure mRNA, was identified as authentic albumin by means of gel electrophoresis and tryptic peptide chromatography.  相似文献   

20.
In vitro translation of liver mRNA from estrogen-treated Xenopus frogs yields two abundant polypeptides in the range of 20 kDa. DNA clones for one of these translation products were isolated and shown to be complementary to mRNA for the heavy subunit of ferritin. The predicted Xenopus amino acid sequence shares about 86% identity with the ferritin heavy chain from bullfrogs and about 70% identity with the comparable mammalian and avian proteins. Clone identity was confirmed by hybridization selection followed by in vitro translation into translation products of 19.5-20 kDa. The nearly full-length cDNA clone, termed XlferH1, comprises 868 nucleotides plus 22 adenosines of the poly(A) tail, including 134 nucleotides of the 5'-untranslated region, a 528-base coding region for 176 amino acids, and a 206-nucleotide 3'-untranslated region. The clone lacks 22 nucleotides from the 5' end of the mRNA. The level of ferritin mRNA in the liver of estrogen-treated frogs was determined over time. The amount of this mRNA relative to total RNA decreased about 3-fold 14 days after estradiol-17 beta was administered. However, the hormone also elevated total RNA in the liver about 24-fold. Hence, the total ferritin mRNA content of the liver increased to about 8 times its initial amount. This pattern of gene expression was very similar to that for serum retinol binding protein. The estrogen induction of these two mRNAs appeared to parallel the overall stimulation of hepatic RNA synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号