首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在膜翅目中 ,未受精卵形成单倍体的雄蜂 ,而在大多数情况下受精卵将产生双倍体的雌蜂。但是 ,因互补性别决定机制 (CSD)的作用 ,受精卵有时也会产生双倍体雄蜂。这种性别决定机制包括单位点的CSD和多位点的CSD。在单位点的CSD作用下 ,唯一的一个性位点上的多个等位基因决定后代个体的性别。性位点上杂合的个体将是雌性 ,半合或同型结合的个体将分别形成单倍体或双倍体的雄性。在多位点的CSD作用下 ,两个或两个以上的性位点控制后代的性别 ,每个性位点上包含两个或两个以上的等位基因。如果一个或一个以上的性位点是杂合的 ,形成的双倍体后代都是雌性的 ,但若是所有的性位点都为同型合子 ,则将产生双倍体的雄蜂。在膜翅目中 ,目前已知 4 3种具有双倍体雄蜂 ,其中 2 2种发现存在单位点的CSD ,但是多位点的CSD还有待于确认。双倍体的雄性个体或者不能存活 ,或者不育 ,这样的个体形成将对寄生蜂种群的增长带来一定的遗传负担。在生物防治上 ,保护寄生蜂种群的性等位基因的多样性及减少其遗传多异性的损失极其重要。如果利用具有单位点CSD的种类 ,采取一定的措施将可避免由于双倍体雄性的形成所带来的负面影响。  相似文献   

2.
Abstract In haplodiploid Hymenoptera, unfertilized eggs produce haploid males while fertilized eggs lead to diploid females under most circumstances. Diploid males can also be produced from fertilization under a system of sex determination known as complementary sex determination (CSD). Under single-locus CSD, sex is determined by multiple alleles at a single sex locus. Individuals heterozygous at the sex locus are female while hemizygous and homozygous individuals develop as haploid and diploid males, respectively. In multiple-locus CSD, two or more loci, each with two or more alleles, determine sex. Diploid individuals are female if one or more sex loci are heterozygous, while a diploid is male only if homozygous at all sex loci. Diploid males are known to occur in 43 hymenopteran species and single-locus CSD has been demonstrated in 22 of these species. Diploid males are either developmentally inviable or sterile, so their production constitutes a genetic load. Because diploid male production is more likely under inbreeding, CSD is a form of inbreeding depression. It is crucial to preserve the diversity of sex alleles and reduce the loss of genetic variation in biological control. In the parasitoid species with single-locus CSD, certain precautionary procedures can prevent negative effects of single-locus CSD on biological control.  相似文献   

3.
Despite its fundamental role in development, sex determination is highly diverse among animals. Approximately 20% of all animals are haplodiploid, with haploid males and diploid females. Haplodiploid species exhibit diverse but poorly understood mechanisms of sex determination. Some hymenopteran insect species exhibit single-locus complementary sex determination (sl-CSD), where heterozygosity at a polymorphic sex locus initiates female development. Diploid males are homozygous at the sex locus and represent a genetic load because they are inviable or sterile. Inbreeding depression associated with CSD is therefore expected to select for other modes of sex determination resulting in fewer or no diploid males. Here, we investigate an alternative, heretofore hypothetical, mode of sex determination: multiple-locus CSD (ml-CSD). Under ml-CSD, diploid males are predicted to develop only from zygotes that are homozygous at all sex loci. We show that inbreeding for eight generations in the parasitoid wasp Cotesia vestalis leads to increasing proportions of diploid males, a pattern that is consistent with ml-CSD but not sl-CSD. The proportion of diploid males (0.27 ± 0.036) produced in the first generation of inbreeding (mother–son cross) suggests that two loci are likely involved. We also modeled diploid male production under CSD with three linked loci. Our data visually resemble CSD with linked loci because diploid male production in the second generation was lower than that in the first. To our knowledge, our data provide the first experimental support for ml-CSD.  相似文献   

4.
In hymenopterans, males are normally haploid (1n) and females diploid (2n), but individuals with divergent ploidy levels are frequently found. In species with ‘complementary sex determination’ (CSD), increasing numbers of diploid males that are often infertile or unviable arise from inbreeding, presenting a major impediment to biocontrol breeding. Non‐CSD species, which are common in some parasitoid wasp taxa, do not produce polyploids through inbreeding. Nevertheless, polyploidy also occurs in non‐CSD Hymenoptera. As a first survey on the impacts of inbreeding and polyploidy of non‐CSD species, we investigate life‐history traits of a long‐term laboratory line of the parasitoid Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) (‘Whiting polyploid line’) in which polyploids of both sexes (diploid males, triploid females) are viable and fertile. Diploid males produce diploid sperm and virgin triploid females produce haploid and diploid eggs. We found that diploid males did not differ from haploid males with respect to body size, progeny size, mate competition, or lifespan. When diploid males were mated to many females (without accounting for mating order), the females produced a relatively high proportion of male offspring, possibly indicating that these males produce less sperm and/or have reduced sperm functionality. In triploid females, parasitization rate and fecundity were reduced and body size was slightly increased, but there was no effect on lifespan. After one generation of outbreeding, lifespan as well as parasitization rate were increased, and a body size difference was no longer apparent. This suggests that outbreeding has an effect on traits observed in an inbred polyploidy background. Overall, these results indicate some phenotypic detriments of non‐CSD polyploids that must be taken into account in breeding.  相似文献   

5.
Besides haplo-diploid sex determination, where females develop from fertilized diploid eggs and males from unfertilized haploid eggs, some Hymenoptera have a secondary system called complementary sex determination (CSD). This depends on genotypes of a 'sex locus' with numerous sex-determining alleles. Diploid heterozygotes develop as females, but diploid homozygotes become sterile or nonviable diploid males. Thus, when females share sex-determining alleles with their mates and produce low fitness diploid males, CSD creates a genetic load. The parasitoid wasp Habrobracon hebetor has CSD and displays mating behaviours that lessen CSD load, including mating at aggregations of males and inbreeding avoidance by females. To examine the influence of population structure and the mating system on CSD load, we conducted genetic analyses of an H. hebetor population in Wisconsin. Given the frequency of diploid males, we estimated that the population harboured 10-16 sex-determining alleles. Overall, marker allele frequencies did not differ between subpopulations, but frequencies changed dramatically between years. This reduced estimates of effective size of subpopulations to only N3 approximately 20-50, which probably reflected annual fluctuations of abundance of H. hebetor. We also determined that the mating system is effectively monogamous. Models relating sex-determining allele diversity and the mating system to female productivity showed that inbreeding avoidance always decreased CSD loads, but multiple mating only reduced loads in populations with fewer than five sex-determining alleles. Populations with N3 less than 100 should have fewer sex-determining alleles than we found, but high diversity could be maintained by a combination of frequency-dependent selection and gene flow between populations.  相似文献   

6.
Wu Z  Hopper KR  Ode PJ  Fuester RW  Tuda M  Heimpel GE 《Heredity》2005,95(3):228-234
In the haplodiploid Hymenoptera, haploid males arise from unfertilized eggs, receiving a single set of maternal chromosomes while diploid females arise from fertilized eggs and receive both maternal and paternal chromosomes. Under single-locus complementary sex determination (sl-CSD), sex is determined by multiple alleles at a single locus. Sex locus heterozygotes develop as females, while hemizygous and homozygous eggs develop as haploid and diploid males, respectively. Diploid males, which are inviable or sterile in almost all cases studied, are therefore produced in high frequency under inbreeding or in populations with low sex allele diversity. CSD is considered to be the ancestral form of sex determination within the Hymenoptera because members of the most basal taxa have CSD while some of the more derived groups have other mechanisms of sex determination that produce the haplo-diploid pattern without penalizing inbreeding. In this study, we investigated sex determination in Heterospilus prosopidis Viereck, a parasitoid from a relatively primitive subfamily of the Braconidae, a hymenopteran family having species with and without CSD. By comparing sex ratio and mortality patterns produced by inbred and outbred females, we were able to rule out sl-CSD as a sex determination mechanism in this species. The absence of sl-CSD in H. prosopidis was unexpected given its basal phylogenetic position in the Braconidae. This and other recent studies suggest that sex determination systems in the Hymenoptera may be evolutionary labile.  相似文献   

7.
In the evolution of sexual reproduction we would expect to see a close association between mating systems and sex determination mechanisms. Such associations are especially evident in the insect order Hymenoptera which shows great diversity with respect to both of these characteristics. The ancestral sex determination mechanism in this order is thought to be single‐locus complementary sex determination (sl‐CSD), which is inbreeding sensitive, and where inbreeding results in the production of sterile diploid males rather than daughters. Presently, however, there is insufficient data to give strong support to the hypothesis that sl‐CSD is truly the ancestral condition in the Hymenoptera, principally because of the difficulty of reliably determining the degree of male ploidy. Here we show that six ichneumonid parasitoids from the polyphyletic genus Diadegma are subject to sl‐CSD, using neuronal cell DNA flow cytometry to distinguish ploidy levels. The presence of sl‐CSD in these six species, together with earlier evidence from the authors for D. chrysostictos, provides considerable support for the notion that sl‐CSD was ancestral in the Aculeata/Ichneumonoidea clade, which contains all eusocial Hymenoptera. Moreover, because flow cytometry discriminates reliably between haploid and diploid males, and is independent of the maternal sex allocation or the need for genetic markers, it has considerable potential for the determination of ploidy more generally.  相似文献   

8.
Sex determination is ruled by haplodiploidy in Hymenoptera, with haploid males arising from unfertilized eggs and diploid females from fertilized eggs. However, diploid males with null fitness are produced under complementary sex determination (CSD), when individuals are homozygous for this locus. Diploid males are expected to be more frequent in genetically eroded populations (such as islands and captive populations), as genetic diversity at the csd locus should be low. However, only a few studies have focused on the relation between population size, genetic diversity, and the proportion of diploid males in the field. Here, we developed new microsatellite markers in order to assess and compare genetic diversity and diploid male proportion (DMP) in populations from three distinct habitat types – mainland, island, or captive –, in the parasitoid wasp Venturia canescens. Eroded genetic diversity and higher DMP were found in island and captive populations, and habitat type had large effect on genetic diversity. Therefore, DMP reflects the decreasing genetic diversity in small and isolated populations. Thus, Hymenopteran populations can be at high extinction risk due to habitat destruction or fragmentation.  相似文献   

9.
In the Hymenoptera, single locus complementary sex determination (sl-CSD) describes a system where males develop either from unfertilized haploid eggs or from fertilized diploid eggs that are homozygous at a single polymorphic sex locus. Diploid males are often inviable or sterile, and are produced more frequently under inbreeding. Within families where sl-CSD has been demonstrated, we predict that sl-CSD should be more likely in species with solitary development than in species where siblings develop gregariously (and likely inbreed). We examine this prediction in the parasitoid wasp genus Cotesia, which contains both solitary and gregarious species. Previous studies have shown that sl-CSD is absent in two gregarious species of Cotesia, but present in one gregarious species. Here, we demonstrate CSD in the solitary Cotesia vestalis, using microsatellite markers. Diploid sons are produced by inbred, but not outbred, females. However, frequencies of diploid males were lower than expected under sl-CSD, suggesting that CSD in C. vestalis involves more than one locus.  相似文献   

10.
Schrempf A  Aron S  Heinze J 《Heredity》2006,97(1):75-80
Haplodiploidy is one of the most widespread mechanisms of sex determination in animals. In many Hymenoptera, including all hitherto investigated social species, diploid individuals, which are heterozygous at the sex locus, develop as females, whereas haploid, hemizygous individuals develop as males (single-locus complementary sex determination, sl-CSD). Inbreeding leads to homozygosity at the sex locus, resulting in the production of diploid males, which are usually sterile and constitute a considerable fitness cost. Nevertheless, regular inbreeding without diploid male production is known from several solitary wasps, suggesting that in these species sex is not determined by sl-CSD but alternative mechanisms. Here, we examine sex determination in an ant with regular inbreeding, Cardiocondyla obscurior. The almost complete absence of diploid males after 10 generations of brother-sister mating in the laboratory documents for the first time the absence of sl-CSD and CSD with two or a few unlinked sex loci in a species of social Hymenoptera. Queens, which mated with a brother, appeared to decrease the number of males in their brood, as expected from the relatedness relationships under inbreeding. In contrast, some colonies began to show signs of an inbreeding depression after several generations of sib-mating, such as shortened queen life span, higher brood mortality, and a shift to more male-biased sex ratios in some colonies, presumably due to lower insemination capability of sperm.  相似文献   

11.
Hymenopteran species in which sex is determined through a haplo‐diploid mechanism known as complementary sex determination (CSD) are vulnerable to a unique form of inbreeding depression. Diploids heterozygous at one or more CSD loci develop into females but diploids homozygous at all loci develop into diploid males, which are generally sterile or inviable. Species with multiple polymorphic CSD loci (ml‐CSD) may have lower rates of diploid male production than species with a single CSD locus (sl‐CSD), but it is not clear if polymorphism is consistently maintained at all loci. Here, we assess the rate of diploid male production in a population of Cotesia rubecula, a two‐locus CSD parasitoid wasp species, approximately 20 years after the population was introduced for biological control. We show that diploid male production dropped from 8–13% in 2005 and 2006 to 3–4% by 2015. We also show from experimental crosses that the population maintained polymorphism at both CSD loci in 2015. We use theory and simulations to show that balancing selection on all CSD alleles promotes polymorphism at several loci in ml‐CSD populations. Our study supports the hypothesis that ml‐CSD populations have lower diploid male production and are more likely to persist than comparable sl‐CSD populations.  相似文献   

12.
王子龙  潘露霞  胡弯弯  李茫  曾志将 《昆虫学报》2019,62(11):1335-1343
昆虫性别决定机制存在多样性和复杂性,其中膜翅目昆虫的性别决定由单双倍体决定,单倍体为雄性,二倍体为雌性。本文就膜翅目昆虫的性别决定模式和分子机制进行综述。膜翅目昆虫性别决定有6种模式,即互补性性别决定(complementary sex determination, CSD)、多位点互补性性别决定(multiple-locus CSD, ml-CSD)、基因组印记、母体效应、内共生体诱导产雌单性生殖、父本遗传基因组消除(paternal genome elimination, PGE)。其中,CSD机制是目前在膜翅目昆虫中普遍接受的性别决定模式。而蜜蜂的CSD性别决定机制是膜翅目昆虫性别决定模式中的典型代表,受csd→fem→dsx这一调控级联的控制。  相似文献   

13.
We studied the sex determination in Diachasmimorpha longicaudata, a parasitoid braconid wasp widely used as biological control agent of fruit pest tephritid flies. We tested the complementary sex determination hypothesis (CSD) known in at least 60 species of Hymenoptera. According to CSD, male or female development depends on the allelic composition of one sex locus (single-locus CSD) or multiple sex loci (multiple-locus CSD). Hemizygote individuals are normal haploid males, and heterozygotes for at least one sex locus are normal diploid females, but homozygotes for all the sex loci are diploid males. In order to force the occurrence of diploid males in D. longicaudata, we established highly inbred lines and examined their offspring using chromosome counting, flow cytometry, and sex ratio analysis. We found that when mother-son crosses were studied, this wasp produced about 20% of diploid males out of the total male progeny. Our results suggest that this parasitoid may represent the second genus with multiple-locus CSD in Hymenoptera. Knowledge about the sex determination system in D. longicaudata is relevant for the improvement of mass rearing protocols of this species. This information also provides the necessary background for further investigations on the underlying molecular mechanisms of sex determination in this species, and a better insight into the evolution of this pathway in Hymenoptera in particular and insects in general.  相似文献   

14.
Female choice is thought to increase the fitness returns of females. The complementary choice model states that the best mate depends on the particular genotype of a female. Aculeate Hymenoptera represent a special case of complementary female choice because males should be chosen on the basis of their allele at the sex determination locus. The prevalent sex determination mechanism in bees and wasps (single-locus complementary sex determination) requires that, to produce a daughter, diploid offspring are heterozygous at the sex determination locus. Otherwise, infertile diploid males result. Inevitably, the proportion of diploid males increases with the rate of inbreeding. In the European Beewolf, males scent mark territories to attract mates and the composition of the pheromone might provide a basis for female choice. One crucial prerequisite for females to be able to discriminate against brothers and avoid inbreeding is that the male sex pheromone varies with familial affiliation. This hypothesis was tested by analysing the pheromone of male progeny of eight mothers using gas chromatography and mass spectrometry. A significantly higher similarity was found among brothers than among unrelated individuals. Such a genetic component of a male sex pheromone has not yet been described from aculeate Hymenoptera.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 433–442.  相似文献   

15.
Hymenopterans under single‐locus complementary sex determination (sl‐CSD) face inbreeding costs due to this sex determination mode. Under sl‐CSD, homozygote eggs at the sl‐CSD locus usually develop into unviable or sterile diploid males. Production of such costly males increases when sib‐mating happens because related individuals share half of their genome. In the hymenopteran Venturia canescens (a solitary parasitoid wasp), diploid males are sterile, leading to fitness costs through genetic incompatibility between parents. Whereas the costs of producing diploid males and behavioural strategies that would reduce such costs have been studied in females, the potential fitness costs faced by males have not. Here, we aimed to investigate fitness costs that males endure after a single sib‐mating and tested whether they have the ability to avoid sib‐mating through kin recognition. Our results show that males have a reduced fitness (i.e. they produce fewer daughters) when mating with their sibs. We also show that males have the ability to distinguish between non‐sib and sib females (i.e. kin). They use chemical marks emitted by the females to discriminate kin from non‐kin. We discuss the evolution of kin recognition in males in the context of mate choice for genetic compatibility. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 279–286.  相似文献   

16.
In the Hymenoptera, males develop as haploids from unfertilized eggs and females develop as diploids from fertilized eggs. In species with complementary sex determination (CSD), however, diploid males develop from zygotes that are homozygous at a highly polymorphic sex locus or loci. We investigated mating behavior and reproduction of diploid males of the parasitoid wasp Cotesia vestalis (C. plutellae), for which we recently demonstrated CSD. We show that the behavior of diploid males of C. vestalis is similar to that of haploid males, when measured as the proportion of males that display wing fanning, and the proportion of males that mount a female. Approximately 29% of diploid males sired daughters, showing their ability to produce viable sperm that can fertilize eggs. Females mated to diploid males produced all-male offspring more frequently (71%) than females mated to haploid males (27%). Daughter-producing females that had mated to diploid males produced more male-biased sex ratios than females mated to haploid males. All daughters of diploid males were triploid and sterile. Three triploid sons were also found among the offspring of diploid males. It has been suggested that this scenario, that is, diploid males mating with females and constraining them to the production of haploid sons, has a large negative impact on population growth rate and secondary sex ratio. Selection for adaptations to reduce diploid male production in natural populations is therefore likely to be strong. We discuss different scenarios that may reduce the sex determination load in C. vestalis.  相似文献   

17.
Because of the twofold cost of sex, genes conferring asexual reproduction are expected to spread rapidly in sexual populations. However, in reality this simple prediction is often confounded by several complications observed in natural systems. Motivated by recent findings in the Cape honey bee and in the parasitoid wasp Lysiphlebus fabarum, we explore through mathematical models the spread of a recessive, parthenogenesis inducing allele in a haplodiploid population. The focus of these models is on the intricate interactions between the mode of parthenogenesis induction through automixis and complementary sex determination (CSD) systems. These interactions may result in asexual production of diploid male offspring and the spread of the parthenogenesis-inducing allele through these males. We demonstrate that if parthenogenetic females produce a substantial proportion of male offspring, this may prevent the parthenogenesis-inducing allele from spreading. However, this effect is weakened if these diploid males are at least partially fertile. We also predict a degradation of multilocus CSD systems during the spread of parthenogenesis, following which only a single polymorphic CSD locus is maintained. Finally, based on empirical parameter estimates from L. fabarum we predict that male production in parthenogens is unlikely to prevent the eventual loss of sexual reproduction in this system.  相似文献   

18.
J. ELIAS  S. DORN  D. MAZZI 《Molecular ecology》2010,19(11):2336-2345
Inbreeding occurs in numerous animal and plant species. In haplodiploid hymenopterans with the widespread single locus complementary sex determination, the frequency of diploid males, which are produced at the expense of females, is increased under inbreeding. Diploid males in species of bees, ants and wasps are typically either unviable or effectively sterile and thus impose a severe genetic load on populations. However, a recent study indicated that diploid males can be reproductive in the gregarious parasitoid wasp Cotesia glomerata, effectively reducing the diploid male load. To understand the role of inbreeding as a potential selective pressure towards the evolution of diploid male fertility, we genotyped specimens collected in the field at four locations using microsatellite markers to estimate the ratio of sibling matings under natural conditions. Results show that more than half of all matings involved siblings. We argue that the frequent occurrence of inbreeding has driven the evolution of diploid male fertility.  相似文献   

19.
Stahlhut JK  Cowan DP 《Heredity》2004,92(3):189-196
The Hymenoptera have arrhenotokous haplodiploidy in which males normally develop from unfertilized eggs and are haploid, while females develop from fertilized eggs and are diploid. Multiple sex determination systems are known to underlie haplodiploidy, and the best understood is single-locus complementary sex determination (sl-CSD) in which sex is determined at a single polymorphic locus. Individuals heterozygous at the sex locus develop as females; individuals that are hemizygous (haploid) or homozygous (diploid) at the sex locus develop as males. sl-CSD can be detected with inbreeding experiments that produce diploid males in predictable proportions as well as sex ratio shifts due to diploid male production. This sex determination system is considered incompatible with inbreeding because the ensuing increase in homozygosity increases the production of diploid males that are inviable or infertile, imposing a high cost on matings between close relatives. However, in the solitary hunting wasp Euodynerus foraminatus, a species suspected of having sl-CSD, inbreeding may be common due to a high incidence of sibling matings at natal nests. In laboratory crosses with E. foraminatus, we find that sex ratios and diploid male production (detected as microsatellite heterozygosity) are consistent with sl-CSD, but not with other sex determination systems. This is the first documented example of sl-CSD in a hymenopteran with an apparent natural history of inbreeding, and thus presents a paradox for our understanding of hymenopteran genetics.  相似文献   

20.
An attractive way to improve our understanding of sex determination evolution is to study the underlying mechanisms in closely related species and in a phylogenetic perspective. Hymenopterans are well suited owing to the diverse sex determination mechanisms, including different types of Complementary Sex Determination (CSD) and maternal control sex determination. We investigated different types of CSD in four species within the braconid wasp genus Asobara that exhibit diverse life-history traits. Nine to thirteen generations of inbreeding were monitored for diploid male production, brood size, offspring sex ratio, and pupal mortality as indicators for CSD. In addition, simulation models were developed to compare these observations to predicted patterns for multilocus CSD with up to ten loci. The inbreeding regime did not result in diploid male production, decreased brood sizes, substantially increased offspring sex ratios nor in increased pupal mortality. The simulations further allowed us to reject CSD with up to ten loci, which is a strong refutation of the multilocus CSD model. We discuss how the absence of CSD can be reconciled with the variation in life-history traits among Asobara species, and the ramifications for the phylogenetic distribution of sex determination mechanisms in the Hymenoptera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号