首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An HPLC column-switching method for the enantioselective determination of (R,S)-atenolol in human urine was developed and validated. Diluted urine samples were injected onto a LiChrospher ADS restricted access column and atenolol was separated from most of the matrix components using 0.01 M Tris buffer. The atenolol peak was sharpened by a step gradient of 30% acetonitrile and the atenolol-containing fraction was switched onto an enantioselective column. Separation of the atenolol enantiomers was carried out on a Chirobiotic T (Teicoplanin) column using acetonitrile–methanol–acetic acid–triethylamine (55:45:0.3:0.2, v/v/v/v) as eluent. Detection of the effluent was performed by fluorescence measurement. Several experiments were carried out to suppress the high blank reading, which was efficiently achieved using Tris buffer in the first dimension. For the enantioselective analysis of (R)- and (S)-atenolol in plasma under the same conditions the sample capacity of the ADS column is considerably lower.  相似文献   

2.
A stereoselective high-performance liquid chromatographic (HPLC) method is described for the selective and sensitive quantitation in human plasma of R-(+)- and S-(−)-enantiomers of remoxipride. Remoxipride was extracted from basified plasma into hexane-methyl-tert.-butyl ether (20:80, v/v), washed with sodium hydroxide (1.0 M), then back-extracted into phosphoric acid (0.1 M). A structural analog of remoxipride was used as an internal standard. The sample extracts were chromatographed using a silica-based derivatized cellulose chiral column, Chiralcel OD-R, and a reversed-phase eluent containing 30–32% acetonitrile in 0.1 M potassium hexafluorophosphate. Ultraviolet (UV) absorbance detection was performed at 214 nm. Using 0.5-ml plasma aliquots, the method was validated in the concentration range 0.02-2.0 μg/ml and was applied in the investigation of systemic inversion of remoxipride enantiomers in man.  相似文献   

3.
A method has been developed for the determination of total celiprolol (sum of enantiomers) or the enantiomers (R)-celiprolol and (S)-celiprolol in plasma by high-performance liquid chromatography with UV and fluorescence detection. After extraction from alkalinized plasma with methyl-tert-butyl ether and back-extraction into 0.01 M HCl (for total celiprolol determination) or after evaporation of the organic phase and derivatisation with R(−)-1-(1-naphthyl)ethyl isocyanate (enantiomer determination), total celiprolol or its diastereomeric derivatives were chromatographed on a reversed-phase HPLC column with a mixture of acetonitrile and phosphate buffer pH 3.5 (+0.05% triethylamine). Acebutolol was used as internal standard. Linearity was obtained in the range of 5 to 2000 ng/ml for total and 2.5 to 500 ng/ml for enantiomer determination. Intra-day and inter-day variation was lower than 10%. The method can be applied for analysis of plasma samples obtained from patients treated with oral racemic celiprolol doses.  相似文献   

4.
An achiral HPLC method using a silica gel column as well as two independent chiral analytical methods by HPLC and capillary zone electrophoresis (CZE) were developed in order to investigate the in vitro metabolism of the racemic antiasthmatic/antiallergic drug flezelastine. The chiral HPLC analysis was performed on a Chiralpak AD column, which also allowed the simultaneous separation of the N-dephenethyl metabolite. The chiral separation by CZE was achieved by the addition of β-cyclodextrin to the run buffer. The stereoselectivity of the in vitro biotransformation of flezelastine was investigated using liver homogenates of different species. Depending on the species, diverse stereoselective aspects were demonstrated. The determination of the enantiomeric ratios of flezelastine and of N-dephenethylflezelastine after incubations of racemic flezelastine with liver microsomes revealed that porcine liver microsomes showed the greatest enantioselectivity of the biotransformation. (−)-Flezelastine was preferentially metabolized. After incubations with bovine liver microsomes the enantiomer of N-dephenethylflezelastine formed from (+)-flezelastine dominated. Incubations of the pure enantiomers of flezelastine with induced rat liver microsomes resulted in the stereoselective formation of a hitherto unknown metabolite, which was only detected in samples of (+)-flezelastine. Initial structure elucidation of the compound indicated that the new  相似文献   

5.
The glucuronides of the anti-inflammatory drug naproxen and its metabolite 6-O-desmethylnaproxen have been produced on a preparative scale by enzymatic synthesis. 6-O-Desmethylnaproxen, the glycine conjugate of naproxen and the O-sulphate of 6-O-desmethylnaproxen were prepared by chemical synthesis. Naproxen and the purified metabolite and conjugates were used as standards for the analytical investigation of the metabolic pattern of naproxen in humans. A reversed-phase high-performance liquid chromatographic method based on bare silica dynamically modified with cetyltrimethylammonium ions has been developed. The system was optimized to give a separation of naproxen, 6-O-desmethylnaproxen and five conjugates. Using this method it is also possible to deduce the relationship between the amount of the intact ether-glucuronide and acyl-glucuronide of 6-O-desmethylnaproxen.  相似文献   

6.
Due to our interest in drugs with a glutarimide structure, we reinvestigated the stereoselectivity of the in vitro biotransformation of the chiral hypnotic-sedative drug glutethimide. Glutethimide enantiomers were separated on a preparative scale by HPLC on cellulose tris(4-methylbenzoate) as chiral stationary phase. The enantiometric purity was higher than 99%. A reversed-phase HPLC method was developed to determine the metabolites of glutethimide. After incubations with rat liver microsomes both enantiomers formed 5-hydroxyglutethimide as the main metabolite, as well as additional metabolites, of which some were formed stereoselectivity. Mass spectrometry of the unknown metabolites indicated a hydroxylation in the ethyl side chain for two of the metabolites. A third metabolite was tentatively identified as desethylgutethimide.  相似文献   

7.
A sensitive method for the determination of S- and R-3-methyl-2-oxopentanoate enantiomers (KMV, (α-keto-β-methylval-erate) in physiological fluids suitable for isotope enrichment analysis is described: after extraction with acid, 2-oxo acids are separated from interfering amino acids by cation-exchange chromatography. Reductive amination of the branched-chain 2-oxo acids by use of - leucine dehydrogenase yields the corresponding -amino acids. -Isoleucine and -alloisoleucine which are formed from S- and R-3-methyl-2-oxopentanoate, respectively, are then quantified by amino acid analysis. The method was used for determination of the R-/S-3-methyl-2-oxopentanoate ratio in plasma of healthy subjects and patients with diabetes mellitus and maple syrup urine disease. Applicability for gas chromatographic-mass spectrometric analysis of 13C-label enrichment in plasma S-3-methyl-2-oxopentanoate is demonstrated.  相似文献   

8.
A selective, accurate and reproducible high-performance liquid chromatographic (HPLC) method for the separation of individual enantiomers of DRF 2725 [R(+)-DRF 2725 and S(-)-DRF 2725 or ragaglitazar] was obtained on a chiral HPLC column (Chiralpak). During method optimization, the separation of enantiomers of DRF 2725 was investigated to determine whether mobile phase composition, flow-rate and column temperature could be varied to yield the base line separation of the enantiomers. Following liquid-liquid extraction, separation of enantiomers of DRF 2725 and internal standard (I.S., desmethyl diazepam) was achieved using an amylose based chiral column (Chiralpak AD) with the mobile phase, n-hexane-propanol-ethanol-trifluoro acetic acid (TFA) in the ratio of 89.5:4:6:0.5 (v/v). Baseline separation of DRF 2725 enantiomers and I.S., free from endogenous interferences, was achieved in less than 25 min. The eluate was monitored using an UV detector set at 240 nm. Ratio of peak area of each enantiomer to I.S. was used for quantification of plasma samples. Nominal retention times of R(+)-DRF 2725, S(-)-DRF 2725 and I.S. were 15.8, 17.7 and 22.4 min, respectively. The standard curves for DRF 2725 enantiomers were linear (R(2) > 0.999) in the concentration range 0.3-50 microg/ml for each enantiomer. Absolute recovery, when compared to neat standards, was 70-85% for DRF 2725 enantiomers and 96% for I.S. from rat plasma. The lower limit of quantification (LLOQ) for each enantiomers of DRF 2725 was 0.3 microg/ml. The inter-day precisions were in the range of 1.71-4.60% and 3.77-5.91% for R(+)-DRF 2725, S(-)-DRF 2725, respectively. The intra-day precisions were in the range of 1.06-11.5% and 0.58-12.7% for R(+)-DRF 2725, S(-)-DRF 2725, respectively. Accuracy in the measurement of quality control (QC) samples was in the range 83.4-113% and 83.3-113% for R(+)-DRF 2725, S(-)-DRF 2725, respectively. Both enantiomers and I.S. were stable in the battery of stability studies viz., bench-top (up to 6 h), auto-sampler (up to 12 h) and freeze/thaw cycles (n = 3). Stability of DRF 2725 enantiomers was established for 15 days at -20 degrees C. The application of the assay to a pharmacokinetic study of ragaglitazar [S(-)-DRF 2725] in rats is described. It was unequivocally demonstrated that ragaglitazar does not undergo chiral inversion to its antipode in vivo in rat plasma.  相似文献   

9.
An improved high-performance liquid chromatography assay for the three stereoisomers of the muscle relaxant mivacurium and its metabolites in plasma is presented. The principal steps in the assay are precipitation of plasma proteins by acetonitrile, lyophilization of the supernatant and ion-exchange chromatography on Spherisorb 5-SCX column, with gradient elution (acetonitrile from 32 to 68% v/v and ionic gradient from 7 to 56 mmol l−1 Na2SO4), a flow-rate of 2.0 ml min−1, d-tubocurarine as internal standard and fluorometric detection (excitation wavelength=280 nm, emission wavelength=320 nm). Quantitation limit of cis-cis, cis-trans, trans-trans isomers were 0.003, 0.002 and 0.005 μmol l−1, respectively. Quantitation limits for the monoestercis metabolite were 0.011 μmol l−1, for the monoestertrans metabolite 0.017 μmol l−1, for the amino-alcoholtrans 0.020 μmol l−1 and for the amino-alcoholcis 0.021 μmol l−1. None of eight drugs used during anaesthesia interfered with the assay in vitro. Satisfactory performance was demonstrated by the measurement of the isomers and their metabolites in plasma of two patients over a 6-h period after repeated injections of mivacurium.  相似文献   

10.
A highly sensitive and selective method has been developed for the simultaneous quantification of 22R- and 22S-epimers of budesonide in human plasma. The drug was isolated from human plasma using C18 solid-phase extraction cartridges and was acetylated with a mixture of 12.5% acetic anhydride and 12.5% triethylamine in acetonitrile to form the 21-acetyl derivatives. Deuterium-labelled budesonide was synthesized and determined to have an isotopic purity > 99%. This was used as the internal standard. Epimers were quantified by automated liquid chromatography-atmospheric pressure chemical ionization mass spectrometry, operating in selected ion mode at m/z 473.2 and m/z 476.2. Linear responses were observed for both epimers over the range 0.25 to 10.0 ng/ml. The average recoveries of 22R- and 22S-epimers of budesonide from human plasma were 87.4% and 87.0%, respectively. The lower limit of quantification for each epimer was 0.25 ng/ml, corresponding to 50.0 pg of analyte on column. Within- and between-day coefficients of variation were 8.6% and 4.0%, respectively.  相似文献   

11.
The absolute configuration of cis-epoxyjasmone (−)-2, isolated from Trichosporum cutaneum CCT 1903 whole cells, has been unambiguously established as (7S,8R), [α]D20 −29.0° (c 1.3, CHCl3), by a new two step method, using a regioselective epoxide opening as the key step followed by Mosher acid derivatization.  相似文献   

12.
Specific adsorption of phosphate ions at pH=7.0 was studied on different proteins, either counter-ions of phosphate (lysozyme, lactoferrin) or co-ion of phosphate (α-lactalbumin). The theoretical electrophoretic mobility of globular proteins lysozyme and α-lactalbumin (apo and holo (+1 calcium per molecule) forms) was compared with those measured by capillary electrophoresis in phosphate at pH 7.0, versus the ionic strength (I) in the range 0–0.775 mol L−1. The specific adsorption of phosphate ions was evidenced by difference. From the experimental charge number (Zeff) of protein in phosphate medium, a phosphate content per protein molecule was determined at pH=7.0.
  • •For lactoferrin (pI=8–9), the electrophoretic mobility (μ) was constant and negative, highlighting a charge reversal due to phosphate adsorption.
  • •For α-lactalbumin (holo form) experimental μ was roughly constant and more negative than predicted. Zeff increased continuously from −4 to −11 in the ionic strength range from 0.005 to 0.775 mol l−1, respectively. Accordingly, one to six phosphates were bound per molecule, respectively.
  • •For lysozyme, experimental electrophoretic mobility was positive but lower than predicted. Zeff was only discrete values +5 for I in the range 0.001–0.020 mol l−1 and about +3 in the range 0.050–0.500 mol l−1, whereas the theoretical Z value was +7 at pH=7.0. Lysozyme bounds one phosphate at low ionic strength and about two — three at higher ionic strength.
Reversed-phase HPLC confirms that adsorption of phosphate is different for the three proteins.  相似文献   

13.
A capillary electrophoresis (CE) and a high-performance liquid chromatography (HPLC) method to analyze biogenic amines in food were compared. An automated precolumn derivatization with o-phthaldialdehyde (OPA) allows for the determination of aliphatic amines and amino acids by HPLC. In contrast, for the measurement of histamine and tyramine by CE, no laborious sample pretreatment was necessary. The biogenic amines were separated by CE or HPLC in less than 9 or 20 min, respectively. The calibration curves were linear to at least 100 mg/kg (r=0.999) and 1,000 mg/kg for HPLC and CE, respectively, with detection limits for histamine of 0.5 mg/kg (fluorescence detector) or 1 mg/kg (diode array detector) with HPLC and 2 mg/kg with CE. The detection limits for tyramine were 1.5 mg/kg with HPLC and 6 mg/kg with CE and for further amines (e.g., putrescine, spermidine, cadaverine, agmatine) ranging from 1.0 to 8.5 mg/kg with HPLC. There was a good correlation between CE and HPLC (correlation coefficient for histamine: 0.994).  相似文献   

14.
Whole cells of Rhodococcus equi A4 chemoselectively hydrolyzed methyl (R,S)-3-benzoyloxy-4-cyanobutanoate and methyl (R,S)-3-benzyloxy-4-cyanobutanoate into monomethyl (R,S)-3-benzoyloxyglutarate and monomethyl (R,S)-3-benzyloxyglutarate, respectively. The intermediates of the biotransformations were the corresponding amides which were also obtained using the purified nitrile hydratase from the same microorganism.  相似文献   

15.
The heterocyclic analogue of (S)-glutamic acid, (S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid [(S)-AMPA] is a potent and selective AMPA receptor agonist, whereas the enantiomeric compound, (R)-AMPA, is virtually inactive. We have previously characterized (RS)-2-amino-3-(3-hydroxy-5-phenyl-4-isoxazolyl)propionic acid [(RS)-APPA] as a partial AMPA receptor agonist showing about 60% of the efficacy of (RS)-AMPA. This partial agonism produced by (RS)-APPA is, however, only apparent, since resolution of (RS)-APPA has now been shown to provide the full AMPA receptor agonist, (S)-APPA, whereas (R)-APPA is a acid (non-NMDA) receptor antagonist showing preferential AMPA blocking effects. In agreement with classical theories for competitive interaction between agonists and antagonists, the efficacy of depolarizations produced by (S)-APPA in the rat cortical wedge preparation was shown to be progressively reduced with increasing molar ratios of (R)-APPA/(S)-APPA. These compounds and the competitive antagonists (RS)-2-amino-3-(3-carboxymethoxy-5-methyl-4-isoxazolyl)propionic acid [(RS)-AMOA], 6-cyano-7-nitroquinoxalin-2,3-dione (CNQX) and 6-nitro-7-sulfamoylbenzo(f)quinoxalin-2,3-dione (NBQX) were also tested in [3H]AMPA and [3H]CNQX binding systems, the latter ligand being used in the absence or presence of thiocyanate ions. On the basis of these studies it is suggested that (RS)-AMPA and the AMPA agonist (S)-APPA interact with a high-affinity receptor conformation, whereas the competitive antagonists (RS)-AMOA and (R)-APPA, derived from these agonists, preferentially bind to a low-affinity AMPA receptor conformation. The competitive antagonists, CNQX and NBQX which are structurally unrelated to (RS)-AMPA or (RS)-APPA, do not seem to discriminate between these two AMPA receptor conformations. The modified [3H]CNQX binding assay containing thiocyanate ions was shown to provide receptor affinity data for AMPA receptor agonists as well as antagonists, which correlate with the potencies of these compounds in the cortical wedge preparation. Using autoradiographic techniques, (S)- and (R)-APPA were shown to exhibit significantly different absolute potencies as inhibitors of [3H]AMPA binding in a number of regions of the rat brain.  相似文献   

16.
The kinetic resolution of racemates constitutes one major route to manufacture optically pure compounds. The enzymatic kinetic resolution of (R,S)-1-phenylethanol over Candida antarctica lipase B (CALB) by using vinyl acetate as the acyl donor in the acylation reaction was chosen as model reaction. A systematic screening and optimization of the reaction parameters, such as enzyme, ionic liquid and substrates concentrations with respect to the final product concentration, were performed. The enantioselectivity of immobilized CALB commercial preparation, Novozym 435, was assayed in several ionic liquids as reaction media. In particular, three different ionic liquids: (i) 1-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF6], (ii) 1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF4] and (iii) 1-ethyl-3-methylimidazolium triflimide [emim][NTf2] were tested. At 6.6% (w/w) of Novozym 435, dispersed in 9.520 M of [bmim][PF6] at 313.15 K, using an equimolar ratio of vinyl acetate/(R,S)-1-phenylethanol after 3 h of bioconversion, the highest possible conversion (50%) was reached with enantiomeric excess for substrate higher than 99%.  相似文献   

17.
The direct resolution and quantitation of (R)- and (S)-disopyramide, isolated from human plasma, was accomplished using a chiral α1-acid glycoprotein column. A LiChrosorb RP-2 column (50 × 3.0 mm I.D.) was used as a precolumn. Phosphate buffer, pH 6.20, containing 2-propanol and N,N-dimethyloctylamine was used as mobile phase, expressed as the relative standard deviation, was 1.8% and 3.3% for (R)- and (S)-disopyramide, respectively, at a drug level of 0.5 μg/ml. In two subjects who received a single capsule of racemic disopyramide (150 mg), the plasma levels of the (R) isomer were about half those of the (S) isomer. The half-lives of (R)- and (S)-disopyramide were similar.  相似文献   

18.
Micellar electrokinetic capillary chromatography (MECC) and high-performance liquid chromatography (HPLC) were used for the separation of stereoisomers of the lipophilic uncharged pyrethroids cypermethrin, alphamethrin, permethrin, and fenpropathrin. Different kinds of cyclodextrin (β-cyclodextrin, hydroxypropyl-β-cyclodextrin, dimethyl-β-cyclodextrin, and γ-cyclodextrin), surfactants (sodium dodecyl sulphate [SDS] and cetyltrimethylammonium bromide [CTAB]), and cations of background electrolyte (sodium, ammonium, TRIS, and Ammediol) were tested. Optimized conditions (background electrolyte: 50 mmol/l sodium phosphate, pH ≈ 2.5, 150 mmol/l SDS, 150 mg/ml γ-cyclodextrin) allowed the separation of alphamethrin, the eight cypermethrin stereoisomers being eluted in seven peaks and the separation of two enantiomers of fenpropathrin with resolution Rs = 10 and with n ≃ 500,000 theoretical plates. Different experimental conditions, e.g., mobile phase composition, temperature, injected amount, and flow rate, were also optimized in HPLC experiments. The optimal conditions (stationary phase: ChiraDex, 5 μm; mobile phase: 150 mmol triethylamine/l with H2SO4 in water (pH = 3.5) with methanol or acetonitrile; flow rate: 0.8 or 0.6 ml/min; temperature: ambient or 30°, 20°, or 10°C; experimental conditions were modified according to the type of analysis) allow chiral discrimination of alphamethrin enantiomers and analysis of permethrin stereoisomers. MECC offers higher efficiency and shorter analysis time than HPLC, but under tested conditions it was shown that the methods complement each other. Chirality 9:162–166, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
A high-performance liquid chromatographic method for automated analysis of both protein-bound and total S-2-(3-aminopropylamino)ethanethiol (WR-1065) in blood has been developed in our laboratory. WR-1065 is the active thiol metabolite of the radio- and chemo-protector drug amifostine (WR-2721). Using WR-1065 quality control levels over the experimental range: 7.0, 45.0 and 85.0 μmol/l spiked into plasma, method validation for total WR-1065 included between-run assessment of imprecision (SD/C.V.%: 1.11/16.7%, 6.58/15.5% and 9.24/11.3%, respectively) and % accuracy (94.7, 106.0 and 97.2%).  相似文献   

20.
(E)-5-(2-Bromovinyl)-2′-deoxyuridine is an antiviral drug used for treatment of infections with Herpes simplex virus type 1 as well as Varicella zoster virus. Two fast methods for the determination of the drug and its metabolite in plasma and urine by capillary electrophoresis have been developed. The plasma method can be used for measurement of total as well as unbound drug and metabolite. Plasma and urine samples are prepared for measuring by liquid/liquid extraction resulting in a limit of quantification of 40 ng/ml for total and 10 ng/ml for free BVdU in plasma and 170 ng/ml in urine. Inter- as well as intra-day precision were found to be better than 10% and both methods have been used for drug monitoring of patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号