首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
用环介导等温扩增技术快速检测粪便样本中的沙门菌   总被引:2,自引:0,他引:2  
目的:建立快速检测粪便样本中的沙门菌的环介导等温扩增技术(LAMP),并着重在灵敏度和特异性方面对此方法进行评价。方法:利用LAMP针对沙门菌特定基因invA(靶基因)设计的6条特异引物,通过引物特异性识别特定基因invA上的8个独立区域来快速检测沙门菌;LAMP反应过程中会产生白色沉淀焦磷酸镁,故可以通过监测浊度来判定反应结果。结果:实时浊度仪监测反应结果表明,LAMP反应在60~65℃等温条件下50 min内完成;如果在反应前添加羟基萘酚兰,蓝色阳性结果很明显区别于紫色阴性结果;LAMP的最低检出限为6.97 pg/μL,PCR为69.7pg/μL,LAMP方法的检测灵敏度是PCR的10倍,且具有良好的特异性。结论:LAMP方法用于快速检测沙门菌,具有检测过程简单、实验装置简便、反应结果肉眼可辨、灵敏度高、特异性强的特点,对非沙门菌菌株的结果呈阴性,表明引物设计有很好的特异性。对粪便样本进行检测,发现具有同样的敏感性和特异性。这表明LAMP法是潜在的和有价值的在粪便样本中直接检测沙门菌的方法,具有快速、简便、低成本的特点。LAMP法适用于快速临床诊断。  相似文献   

2.
Here we report a rapid and sensitive method (using loop-mediated isothermal amplification [LAMP]) for the diagnosis of edwardsiellosis, a fish disease caused by Edwardsiella tarda, in Japanese flounder. A set of four primers was designed, and conditions for the detection were optimized for the detection of E. tarda in 45 min at 65°C. No amplification of the target hemolysin gene was detected in other related bacteria. When the LAMP primers were used, detection of edwardsiellosis in infected Japanese flounder kidney, and spleen and seawater cultures was possible. We have developed a rapid and sensitive diagnostic protocol for edwardsiellosis detection in fish. This is the first report of the application of LAMP for the diagnosis of a fish pathogen.  相似文献   

3.
Giardia lamblia is recognized as one of the most prevalent parasites in dogs. The present study aimed to establish a loop-mediated isothermal amplification (LAMP) assay for rapid and specific detection of G. lamblia from dogs. The fecal samples were collected and prepared for microscopic analysis, and then the genomic DNA was extracted directly from purified cysts. The concentration of DNA samples of G. lamblia were diluted by 10-fold serially ranging from 10-1 to 10-5 ng/µl for LAMP and PCR assays. The LAMP assay allows the amplification to be finished within 60 min under isothermal conditions of 63℃ by employing 6 oligonucleotide primers designed based on G. lamblia elongation factor 1 alpha (EF1α) gene sequence. Our tests showed that the specific amplification products were obtained only with G. lamblia, while no amplification products were detected with DNA of other related protozoans. Sensitivity evaluation indicated that the LAMP assay was sensitive 10 times more than PCR. It is concluded that LAMP is a rapid, highly sensitive and specific DNA amplification technique for detection of G. lamblia, which has implications for effective control and prevention of giardiasis.  相似文献   

4.
Molecular diagnostics for crop diseases can enhance food security by enabling the rapid identification of threatening pathogens and providing critical information for the deployment of disease management strategies. Loop-mediated isothermal amplification (LAMP) is a PCR-based tool that allows the rapid, highly specific amplification of target DNA sequences at a single temperature and is thus ideal for field-level diagnosis of plant diseases. We developed primers highly specific for two globally important rice pathogens, Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight (BB) disease, and X. oryzae pv. oryzicola, the causal agent of bacterial leaf streak disease (BLS), for use in reliable, sensitive LAMP assays. In addition to pathovar distinction, two assays that differentiate X. oryzae pv. oryzae by African or Asian lineage were developed. Using these LAMP primer sets, the presence of each pathogen was detected from DNA and bacterial cells, as well as leaf and seed samples. Thresholds of detection for all assays were consistently 104 to 105 CFU ml−1, while genomic DNA thresholds were between 1 pg and 10 fg. Use of the unique sequences combined with the LAMP assay provides a sensitive, accurate, rapid, simple, and inexpensive protocol to detect both BB and BLS pathogens.  相似文献   

5.
Loop-mediated isothermal amplification (LAMP) was designed for detection of Listeria monocytogenes, which is an important food-borne kind of pathogenic bacteria causing human and animal disease. The primers set for the hlyA gene consist of six primers targeting eight regions on specific gene. The LAMP assay could be performed within 40 min at 65°C in a water bath. Amplification products were visualized by calcein and manganous ion and agarose gel electrophoresis. Sensitivity of the LAMP assay for detection of L. monocytogenes in pure cultures was 2.0 CFU per reaction. The LAMP assay was 100-fold higher sensitive than that of the conventional PCR assay. Taking this way, 60 chicken samples were investigated for L. monocytogenes. The accuracy of LAMP was shown to be 100% when compared to the “gold standard” culture-biotechnical, while the PCR assay failed to detect L. monocytogenes in two of the positive samples. It is shown that LAMP assay can be used as a sensitive, rapid, and simple detection tool for the detection of L. monocytogenes and will facilitate the surveillance for contamination of L. monocytogenes in food.  相似文献   

6.
快速检测HBV DNA的环状介导等温DNA扩增法   总被引:5,自引:2,他引:5  
环状介导等温DNA扩增(LAMP)技术是一种新的核酸扩增方法,它能够高特异性、高效、快速地进行核酸的扩增。利用LAMP法检测乙型肝炎病毒(HBV),能够在等温条件下于1h内将少量的基因拷贝数扩增至10^9,在对65份临床标本的检测中显示了较高的特异性。与现有的PCR技术相比,LAMP法更加简便快速,且在等温条件下进行,不需要复杂的仪器设备,为临床检测乙肝病毒提供了一个快速筒便的新方法。  相似文献   

7.

Background

Carrion'' disease, caused by Bartonella bacilliformis, remains truly neglected due to its focal geographical nature. A wide spectrum of clinical manifestations, including asymptomatic bacteremia, and lack of a sensitive diagnostic test can potentially lead to a spread of the disease into non-endemic regions where competent sand fly vectors may be present. A reliable test capable of detecting B. bacilliformis is urgently needed. Our objective is to develop a loop-mediated isothermal amplification (LAMP) assay targeting the pap31 gene to detect B. bacilliformis.

Methods and Findings

The sensitivity of the LAMP was evaluated in comparison to qPCR using plasmid DNA containing the target gene and genomic DNA in the absence and presence of human or sand fly DNA. The detection limit of LAMP was 1 to 10 copies/µL, depending on the sample metrics. No cross-reaction was observed when testing against a panel of various closely related bacteria. The utility of the LAMP was further compared to qPCR by the examination of 74 Lutzomyia longipalpis sand flies artificially fed on blood spiked with B. bacilliformis and harvested at days (D) 1, 3, 5, 7 and 9 post feeding. Only 86% of sand flies at D1 and 63% of flies at D3 were positive by qPCR. LAMP was able to detect B. bacilliformis in all those flies confirmed positive by qPCR. However, none of the flies after D3 were positive by either LAMP or qPCR. In addition to demonstrating the sensitivity of the LAMP assay, these results suggest that B. bacilliformis cannot propagate in artificially fed L. longipalpis.

Conclusions

The LAMP assay is as sensitive as qPCR for the detection of B. bacilliformis and could be useful to support diagnosis of patients in low-resource settings and also to identify B. bacilliformis in the sand fly vector.  相似文献   

8.
9.
A new in situ DNA amplification technique for microscopic detection of bacteria carrying a specific gene is described. Loop-mediated isothermal amplification (LAMP) was used to detect stxA2 in Escherichia coli O157:H7 cells. The mild permeabilization conditions and low isothermal temperature used in the in situ LAMP method caused less cell damage than in situ PCR. It allowed use of fluorescent antibody labeling in the bacterial mixture after the DNA amplification for identification of E. coli O157:H7 cells with an stxA2 gene. Higher-contrast images were obtained with this method than with in situ PCR.  相似文献   

10.
11.
Thrips palmi (from the order Thysanoptera) is a serious insect pest of various crops, including vegetables, fruits and ornamental plants, causing significant economic losses. Its presence constitutes a double threat; not only does T. palmi feed on the plants, it is also a vector for several plant viruses. T. palmi originated in Asia, but has spread to North and Central America, Africa, Oceania and the Caribbean in recent decades. This species has been sporadically noted in Europe and is under quarantine regulation in the European Union. For non-specialists its larval stages are indistinguishable morphologically from another widespread and serious insect pest Frankliniella occidentalis (a non-quarantine species in the European Union) as well as other frequently occurring thrips. In this study, we have developed a loop-mediated isothermal amplification protocol to amplify rDNA regions of T. palmi. The results were consistent whether isolated DNA or crushed insects were used as template, indicating that the DNA isolation step could be omitted. The described method is species-specific and sensitive and provides a rapid diagnostic tool to detect T. palmi in the field.  相似文献   

12.
13.
创伤弧菌是一种重要的食源性致病菌,主要存在于河口和海洋环境中,严重危害水产养殖业的发展和人类健康。建立快速、准确、易操作的检测方法对防控创伤弧菌的传染,保障水产养殖业发展和增强食品安全意义重大。基于创伤弧菌vvHA基因,利用一种新型的核酸扩增技术-环介导恒温扩增(loop-mediated isothermal amplification,LAMP),建立了创伤弧菌LAMP快速检测方法。对11种共46株细菌进行扩增,仅创伤弧菌为LAMP阳性结果,说明LAMP方法具有高度特异性。灵敏度试验结果表明,对创伤弧菌纯培养菌的检测灵敏度为15CFU/ml,对污染食品中创伤弧菌的检测灵敏度为24CFU/g。此法40~60min内即可完成检测,检验检疫实践证明:LAMP方法操作简便、特异性强、灵敏度高且成本低廉,具有良好的应用前景。  相似文献   

14.
Amoebic keratitis (AK) caused by Acanthamoeba is one of the most serious corneal infections. AK is frequently misdiagnosed initially as viral, bacterial, or fungal keratitis, thus ensuring treatment delays. Accordingly, the early detection of Acanthamoeba would contribute significantly to disease management and selection of an appropriate anti-amoebic therapy. Recently, the loop-mediated isothermal amplification (LAMP) method has been applied to the clinical diagnosis of a range of infectious diseases. Here, we describe a rapid and efficient LAMP-based method targeting Acanthamoeba 18S rDNA gene for the detection of Acanthamoeba using clinical ocular specimens in the diagnosis of AK. Acanthamoeba LAMP assays detected 11 different strains including all AK-associated species. The copy number detection limit for a positive signal was 10 DNA copies of 18S rDNA per reaction. No cross-reactivity with the DNA of fungi or other protozoa was observed. The sensitivity of LAMP assay was higher than those of Nelson primer PCR and JDP primer PCR. In the present study, LAMP assay based on directly heat-treated samples was found to be as efficient at detecting Acanthamoeba as DNA extracted using a commercial kit, whereas PCR was only effective when commercial kit-extracted DNA was used. This study showed that the devised Acanthamoeba LAMP assay could be used to diagnose AK in a simple, sensitive, and specific manner.  相似文献   

15.
Detecting point mutation of human cancer cells quickly and accurately is gaining in importance for pathological diagnosis and choice of therapeutic approach. In the present study, we present novel methodology, peptide nucleic acid—locked nucleic acid mediated loop-mediated isothermal amplification (PNA-LNA mediated LAMP), for rapid detection of KRAS mutation using advantages of both artificial DNA and LAMP. PNA-LNA mediated LAMP reactions occurred under isothermal temperature conditions of with 4 primary primers set for the target regions on the KRAS gene, clamping PNA probe that was complimentary to the wild type sequence and LNA primers complementary to the mutated sequences. PNA-LNA mediated LAMP was applied for cDNA from 4 kinds of pancreatic carcinoma cell lines with or without KRAS point mutation. The amplified DNA products were verified by naked-eye as well as a real-time PCR equipment. By PNA-LNA mediated LAMP, amplification of wild type KRAS DNA was blocked by clamping PNA probe, whereas, mutant type KRAS DNA was significantly amplified within 50 min. Mutant alleles could be detected in samples which diluted until 0.1% of mutant-to-wild type ratio. On the other hand, mutant alleles could be reproducibly with a mutant-to-wild type ratio of 30% by direct sequencing and of 1% by PNA-clamping PCR. The limit of detection (LOD) of PNA-LNA mediated LAMP was much lower than the other conventional methods. Competition of LNA clamping primers complementary to two different subtypes (G12D and G12V) of mutant KRAS gene indicated different amplification time depend on subtypes of mutant cDNA. PNA-LNA mediated LAMP is a simple, rapid, specific and sensitive methodology for the detection of KRAS mutation.  相似文献   

16.
环介导的恒温扩增技术及其在病毒性疾病诊断中的应用   总被引:2,自引:0,他引:2  
环介导的恒温扩增(LAMP)是近年来新兴的一种快速DNA扩增技术,其基本原理在于利用4个特殊设计的引物和具有链置换活性的DNA聚合酶,在恒温条件下对靶序列进行扩增。LAMP技术具有特异性强、敏感性高、反应迅速、设备简单等特点,在人类病毒性疾病的诊断领域有着广泛的应用。  相似文献   

17.
In this study, a double loop-mediated isothermal amplification (dLAMP) based on two target genes hlyA and iap was developed for the rapid detection of Listeria monocytogenes in food. The results revealed that the detection time and temperature of our dLAMP assay for L. monocytogenes were 15 min and 63 °C respectively, with a sensitivity of 10 fg DNA of L. monocytogenes per tube. While normal LAMP (nLAMP) of hlyA or iap was 100 fg DNA of L. monocytogenes per tube for 45 min and 63 °C. Furthermore, mineral oil and GoldViewII nucleic acid stain were chosen as the basic materials to develop a simple visualized identification of the positive samples. A total of 450 food samples were tested for L. monocytogenes using the dLAMP protocol developed in this study. The results showed that the accuracy of the dLAMP and the “gold standard” culture-biotechnical method were 100 % identical, suggesting that the modified dLAMP assay would provide a potential for detection of L. monocytogenes in food products.  相似文献   

18.
Xanthomonas fragariae is a bacterium that causes angular leaf spot of strawberry. Asymptomatic infection is common and contributes to the difficulties in disease management. The aim of this study was to develop a loop-mediated isothermal amplification (LAMP) assay as an efficient method for detection of asymptomatic infections of X. fragariae. In addition, a new method of sample preparation was developed that allows sampling of a larger amount of plant tissue, hence increasing the detection rate in real-life samples. The sample preparation procedure includes an overnight incubation of strawberry tissues in phosphate-buffered saline (PBS), followed by a quick sample concentration and a boiling step to extract DNA for amplification. The detection limit of the LAMP assay was approximately 2×103 CFU/mL for pure bacteria culture and 300 CFU/mL for bacteria spiked strawberry leaf and petiole samples. LAMP provided a 2–3 fold lower detection limit than the standard qPCR assay but was faster, and more user-friendly. The LAMP assay should serve as a rapid, sensitive and cost-effective tool for detecting asymptomatic infections of X. fragariae in strawberry nursery stock and contribute to improved disease management.  相似文献   

19.
目的利用环介导等温扩增(LAMP)技术建立一种检测犬瘟热病毒感染的新方法。方法根据GenBank中NP基因序列,设计4条LAMP特异性引物,对反应条件、特异性、可视化效果和应用效果进行研究。结果在60℃等温的条件下、1 h内可完成RT-LAMP扩增过程;特异性和可视效果良好;对63份临床标本进行检测,阳性检出率为71.4%(45/63),检出率高于RT-PCR的63.5%(40/63)。结论建立的RT-LAMP检测方法,显示了较高的特异性和敏感性,而且兼具高效、快捷、可视化的优势,为临床检测犬瘟热病毒感染提供了一种快速简便的新途径。  相似文献   

20.
As the second year of the COVID-19 pandemic begins, it remains clear that a massive increase in the ability to test for SARS-CoV-2 infections in a myriad of settings is critical to controlling the pandemic and to preparing for future outbreaks. The current gold standard for molecular diagnostics is the polymerase chain reaction (PCR), but the extraordinary and unmet demand for testing in a variety of environments means that both complementary and supplementary testing solutions are still needed. This review highlights the role that loop-mediated isothermal amplification (LAMP) has had in filling this global testing need, providing a faster and easier means of testing, and what it can do for future applications, pathogens, and the preparation for future outbreaks. This review describes the current state of the art for research of LAMP-based SARS-CoV-2 testing, as well as its implications for other pathogens and testing. The authors represent the global LAMP (gLAMP) Consortium, an international research collective, which has regularly met to share their experiences on LAMP deployment and best practices; sections are devoted to all aspects of LAMP testing, including preanalytic sample processing, target amplification, and amplicon detection, then the hardware and software required for deployment are discussed, and finally, a summary of the current regulatory landscape is provided. Included as well are a series of first-person accounts of LAMP method development and deployment. The final discussion section provides the reader with a distillation of the most validated testing methods and their paths to implementation. This review also aims to provide practical information and insight for a range of audiences: for a research audience, to help accelerate research through sharing of best practices; for an implementation audience, to help get testing up and running quickly; and for a public health, clinical, and policy audience, to help convey the breadth of the effect that LAMP methods have to offer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号