首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Thymine DNA glycosylase (TDG) excises T from G·T mispairs and is thought to initiate base excision repair (BER) of deaminated 5-methylcytosine (mC). Recent studies show that TDG, including its glycosylase activity, is essential for active DNA demethylation and embryonic development. These and other findings suggest that active demethylation could involve mC deamination by a deaminase, giving a G·T mispair followed by TDG-initiated BER. An alternative proposal is that demethylation could involve iterative oxidation of mC to 5-hydroxymethylcytosine (hmC) and then to 5-formylcytosine (fC) and 5-carboxylcytosine (caC), mediated by a Tet (ten eleven translocation) enzyme, with conversion of caC to C by a putative decarboxylase. Our previous studies suggest that TDG could excise fC and caC from DNA, which could provide another potential demethylation mechanism. We show here that TDG rapidly removes fC, with higher activity than for G·T mispairs, and has substantial caC excision activity, yet it cannot remove hmC. TDG excision of fC and caC, oxidation products of mC, is consistent with its strong specificity for excising bases from a CpG context. Our findings reveal a remarkable new aspect of specificity for TDG, inform its catalytic mechanism, and suggest that TDG could protect against fC-induced mutagenesis. The results also suggest a new potential mechanism for active DNA demethylation, involving TDG excision of Tet-produced fC (or caC) and subsequent BER. Such a mechanism obviates the need for a decarboxylase and is consistent with findings that TDG glycosylase activity is essential for active demethylation and embryonic development, as are mechanisms involving TDG excision of deaminated mC or hmC.  相似文献   

2.
In mammalian genomes, cytosine methylation occurs predominantly at CG (or CpG) dinucleotide contexts. As part of dynamic epigenetic regulation, 5-methylcytosine (mC) can be erased by active DNA demethylation, whereby ten-eleven translocation (TET) enzymes catalyze the stepwise oxidation of mC to 5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC), and 5-carboxycytosine (caC), thymine DNA glycosylase (TDG) excises fC or caC, and base excision repair yields unmodified cytosine. In certain cell types, mC is also enriched at some non-CG (or CH) dinucleotides, however hmC is not. To provide biochemical context for the distribution of modified cytosines observed in biological systems, we systematically analyzed the activity of human TET2 and TDG for substrates in CG and CH contexts. We find that while TET2 oxidizes mC more efficiently in CG versus CH sites, this context preference can be diminished for hmC oxidation. Remarkably, TDG excision of fC and caC is only modestly dependent on CG context, contrasting its strong context dependence for thymine excision. We show that collaborative TET-TDG oxidation-excision activity is only marginally reduced for CA versus CG contexts. Our findings demonstrate that the TET-TDG-mediated demethylation pathway is not limited to CG sites and suggest a rationale for the depletion of hmCH in genomes rich in mCH.  相似文献   

3.
Inoue A  Shen L  Dai Q  He C  Zhang Y 《Cell research》2011,21(12):1670-1676
One of the recent advances in the epigenetic field is the demonstration that the Tet family of proteins are capable of catalyzing conversion of 5-methylcytosine (5mC) of DNA to 5-hydroxymethylcytosine (5hmC). Interestingly, recent studies have shown that 5hmC can be further oxidized by Tet proteins to generate 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), which can be removed by thymine DNA glycosylase (TDG). To determine whether Tet-catalyzed conversion of 5mC to 5fC and 5caC occurs in vivo in zygotes, we generated antibodies specific for 5fC and 5caC. By immunostaining, we demonstrate that loss of 5mC in the paternal pronucleus is concurrent with the appearance of 5fC and 5caC, similar to that of 5hmC. Importantly, instead of being quickly removed through an enzyme-catalyzed process, both 5fC and 5caC exhibit replication-dependent dilution during mouse preimplantation development. These results not only demonstrate the conversion of 5mC to 5fC and 5caC in zygotes, but also indicate that both 5fC and 5caC are relatively stable and may be functional during preimplantation development. Together with previous studies, our study suggests that Tet-catalyzed conversion of 5mC to 5hmC/5fC/5caC followed by replication-dependent dilution accounts for paternal DNA demethylation during preimplantation development.  相似文献   

4.
5.
6.
Aging is a complex time-dependent biological process that takes place in every cell and organ, eventually leading to degenerative changes that affect normal biological functions. In the past decades, the number of older parents has increased significantly. While it is widely recognized that oocyte aging poses higher birth and reproductive risk, the exact molecular mechanisms remain largely elusive. DNA methylation of 5-cytosine (5mC) and histone modifications are among the key epigenetic mechanisms involved in critical developmental processes and have been linked to aging. However, the impact of oocyte aging on DNA demethylation pathways has not been examined. The recent discovery of Ten-Eleven-Translocation (TET) family proteins, thymine DNA glycosylase (TDG) and the demethylation intermediates 5hmC, 5fC and 5caC has provided novel clues to delineate the molecular mechanisms in DNA demethylation. In this study, we examined the cellular level of modified cytosines (5mC, 5hmC, 5fC and 5caC) and Tet/Tdg expression in oocytes obtained from natural and accelerated oocyte aging conditions. Here we show all the DNA demethylation marks are dynamically regulated in both aging conditions, which are associated with Tet3 over-expression and Tdg repression. Such an aberrant expression pattern was more profound in accelerated aging condition. The results suggest that DNA demethylation may be actively involved in oocyte aging and have implications for development of potential drug targets to rejuvenate aging oocytes.This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.  相似文献   

7.
8.
9.
Patterns of DNA methylation (5-methylcytosine, 5mC) are rearranged during differentiation contributing to the regulation of cell type-specific gene expression. TET proteins oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Both 5fC and 5caC can be recognized and excised from DNA by thymine-DNA glycosylase (TDG) followed by the subsequent incorporation of unmodified cytosine into the abasic site via the base excision repair (BER) pathway. We previously demonstrated that 5caC accumulates during lineage specification of neural stem cells (NSCs) suggesting that such active demethylation pathway is operational in this system; however, it is still unknown if TDG/BER-dependent demethylation is used during other types of cellular differentiation. Here we analyze dynamics of the global levels of 5hmC and 5caC during differentiation of human pluripotent stem cells toward hepatic endoderm. We show that, similar to differentiating NSCs, 5caC transiently accumulates during hepatic differentiation. The levels of 5caC increase during specification of foregut, peak at the stage of hepatic endoderm commitment, and drop in differentiating cells concurrently with the onset of expression of α fetoprotein, a marker of committed hepatic progenitors. Moreover, we show that 5caC accumulates at promoter regions of several genes expressed during hepatic specification at differentiation stages corresponding to the beginning of their expression. Our data indicate that transient 5caC accumulation is a common feature of 2 different types (neural/glial and endoderm/hepatic) of cellular differentiation. This suggests that oxidation of 5mC may represent a general mechanism of rearrangement of 5mC profiles during lineage specification of somatic cells in mammals.  相似文献   

10.
11.
DNA methylation has been proven to be a critical epigenetic mark important for various cellular processes. Here, we report that redox-active quinones, a ubiquitous class of chemicals found in natural products, cancer therapeutics and environment, stimulate the conversion of 5mC to 5hmC in vivo, and increase 5hmC in 5751 genes in cells. 5hmC increase is associated with significantly altered gene expression of 3414 genes. Interestingly, in quinone-treated cells, labile iron-sensitive protein ferritin light chain showed a significant increase at both mRNA and protein levels indicating a role of iron regulation in stimulating Tet-mediated 5mC oxidation. Consistently, the deprivation of cellular labile iron using specific chelator blocked the 5hmC increase, and a delivery of labile iron increased the 5hmC level. Moreover, both Tet1/Tet2 knockout and dimethyloxalylglycine-induced Tet inhibition diminished the 5hmC increase. These results suggest an iron-regulated Tet-dependent DNA demethylation mechanism mediated by redox-active biomolecules.  相似文献   

12.
Accurate reprogramming of DNA methylation occurring in preimplantation embryos is critical for normal development of both fetus and placenta. Environmental stresses imposed on oocytes usually cause the abnormal DNA methylation reprogramming of early embryos. However, whether oocyte vitrification alters the reprogramming of DNA methylation (5 mC) and its derivatives in mouse preimplantation embryo development remains largely unknown. Here, we found that the rate of cleavage and blastocyst formation of embryos produced by IVF of vitrified matured oocytes was significantly lower than that in control counterparts, but the quality of blastocysts was not impaired by oocyte vitrification. Additionally, although vitrification neither altered the dynamic changes of 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5 fC) before 4-cell stage nor affected the levels of 5 mC and 5-carboxylcytosine (5caC) throughout the preimplantation development, vitrification significantly reduced the levels of 5hmC and 5 fC from 8-cell stage onwards. Correspondingly, vitrification did not alter the expression patterns of Tet3 in preimplantation embryos but apparently reduced the expression levels of Tet1 in 4-cell and 8-cell embryos and increased the expression levels of Tet2 at morula stage. Taken together, these results demonstrate that oocyte vitrification perturbs DNA methylation reprogramming in mouse preimplantation embryo development.  相似文献   

13.
14.
The mammalian thymine DNA glycosylase (TDG) is implicated in active DNA demethylation via the base excision repair pathway. TDG excises the mismatched base from G:X mismatches, where X is uracil, thymine or 5-hydroxymethyluracil (5hmU). These are, respectively, the deamination products of cytosine, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). In addition, TDG excises the Tet protein products 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) but not 5hmC and 5mC, when paired with a guanine. Here we present a post-reactive complex structure of the human TDG domain with a 28-base pair DNA containing a G:5hmU mismatch. TDG flips the target nucleotide from the double-stranded DNA, cleaves the N-glycosidic bond and leaves the C1′ hydrolyzed abasic sugar in the flipped state. The cleaved 5hmU base remains in a binding pocket of the enzyme. TDG allows hydrogen-bonding interactions to both T/U-based (5hmU) and C-based (5caC) modifications, thus enabling its activity on a wider range of substrates. We further show that the TDG catalytic domain has higher activity for 5caC at a lower pH (5.5) as compared to the activities at higher pH (7.5 and 8.0) and that the structurally related Escherichia coli mismatch uracil glycosylase can excise 5caC as well. We discuss several possible mechanisms, including the amino-imino tautomerization of the substrate base that may explain how TDG discriminates against 5hmC and 5mC.  相似文献   

15.
The mechanism responsible for developmental stage-specific regulation of γ-globin gene expression involves DNA methylation. Previous results have shown that the γ-globin promoter is nearly fully demethylated during fetal liver erythroid differentiation and partially demethylated during adult bone marrow erythroid differentiation. The hypothesis that 5-hydroxymethylcytosine (5hmC), a known intermediate in DNA demethylation pathways, is involved in demethylation of the γ-globin gene promoter during erythroid differentiation was investigated by analyzing levels of 5-methylcytosine (5mC) and 5hmC at a CCGG site within the 5′ γ-globin gene promoter region in FACS-purified cells from baboon bone marrow and fetal liver enriched for different stages of erythroid differentiation. Our results show that 5mC and 5hmC levels at the γ-globin promoter are dynamically modulated during erythroid differentiation with peak levels of 5hmC preceding and/or coinciding with demethylation. The Tet2 and Tet3 dioxygenases that catalyze formation of 5hmC are expressed during early stages of erythroid differentiation and Tet3 expression increases as differentiation proceeds. In baboon CD34+ bone marrow-derived erythroid progenitor cell cultures, γ-globin expression was positively correlated with 5hmC and negatively correlated with 5mC at the γ-globin promoter. Supplementation of culture media with Vitamin C, a cofactor of the Tet dioxygenases, reduced γ-globin promoter DNA methylation and increased γ-globin expression when added alone and in an additive manner in combination with either DNA methyltransferase or LSD1 inhibitors. These results strongly support the hypothesis that the Tet-mediated 5hmC pathway is involved in developmental stage-specific regulation of γ-globin expression by mediating demethylation of the γ-globin promoter.  相似文献   

16.
Xu Y  Wu F  Tan L  Kong L  Xiong L  Deng J  Barbera AJ  Zheng L  Zhang H  Huang S  Min J  Nicholson T  Chen T  Xu G  Shi Y  Zhang K  Shi YG 《Molecular cell》2011,42(4):451-464
DNA methylation at the 5 position of cytosine (5mC) in the mammalian genome is a key epigenetic event critical for various cellular processes. The ten-eleven translocation (Tet) family of 5mC-hydroxylases, which convert 5mC to 5-hydroxymethylcytosine (5hmC), offers a way for dynamic regulation of DNA methylation. Here we report that Tet1 binds to unmodified C or 5mC- or 5hmC-modified CpG-rich DNA through its CXXC domain. Genome-wide mapping of Tet1 and 5hmC reveals mechanisms by which Tet1 controls 5hmC and 5mC levels in mouse embryonic stem cells (mESCs). We also uncover a comprehensive gene network influenced by Tet1. Collectively, our data suggest that Tet1 controls DNA methylation both by binding to CpG-rich regions to prevent unwanted DNA methyltransferase activity, and by converting 5mC to 5hmC through hydroxylase activity. This Tet1-mediated antagonism of CpG methylation imparts differential maintenance of DNA methylation status at Tet1 targets, ultimately contributing to mESC differentiation and the onset of embryonic development.  相似文献   

17.
5-Hydroxymethylcytosine (hmC) was recently detected as the sixth base in mammalian tissue at so far controversial levels. The function of the modified base is currently unknown, but it is certain that the base is generated from 5-methylcytosine (mC). This fuels the hypothesis that it represents an intermediate of an active demethylation process, which could involve further oxidation of the hydroxymethyl group to a formyl or carboxyl group followed by either deformylation or decarboxylation. Here, we use an ultra-sensitive and accurate isotope based LC-MS method to precisely determine the levels of hmC in various mouse tissues and we searched for 5-formylcytosine (fC), 5-carboxylcytosine (caC), and 5-hydroxymethyluracil (hmU) as putative active demethylation intermediates. Our data suggest that an active oxidative mC demethylation pathway is unlikely to occur. Additionally, we show using HPLC-MS analysis and immunohistochemistry that hmC is present in all tissues and cell types with highest concentrations in neuronal cells of the CNS.  相似文献   

18.
The formation of three oxidative DNA 5-methylcytosine (5mC) modifications (oxi-mCs)—5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC)—by the TET/JBP family of dioxygenases prompted intensive studies of their functional roles in mammalian cells. However, the functional interplay of these less abundant modified nucleotides in other eukaryotic lineages remains poorly understood. We carried out a systematic study of the content and distribution of oxi-mCs in the DNA and RNA of the basidiomycetes Laccaria bicolor and Coprinopsis cinerea, which are established models to study DNA methylation and developmental and symbiotic processes. Quantitative liquid chromatography–tandem mass spectrometry revealed persistent but uneven occurrences of 5hmC, 5fC and 5caC in the DNA and RNA of the two organisms, which could be upregulated by vitamin C. 5caC in RNA (5carC) was predominantly found in non-ribosomal RNA, which potentially includes non-coding, messenger and small RNA species. Genome-wide mapping of 5hmC and 5fC using the single CG analysis techniques hmTOP-seq and foTOP-seq pointed at involvement of oxi-mCs in the regulation of gene expression and silencing of transposable elements. The implicated diverse roles of 5mC and oxi-mCs in the two fungi highlight the epigenetic importance of the latter modifications, which are often neglected in standard whole-genome bisulfite analyses.  相似文献   

19.
20.
Two new studies imply that the reprogramming of 5-methylcytosine via TET- and TDG-family enzymes is both widespread throughout the genome and functionally significant.In the mammalian genome, the dinucleotide CpG acts as a unique signaling module that can regulate the local chromatin environment through the recruitment of specific chromatin modifying proteins [1]. Although it is thought to be context specific, the general enzymatic acquisition of methylation at CpG dinucleotides by DNA methlytransferase enzymes (DNMTs) over promoter regions tends to be associated with gene silencing events and heterochromatin formation. The maintenance of 5-methylcytosine (5mC) modification patterns has since been implicated in many important roles in normal cell function during mammalian development and disease progression [1]. Although it is widely understood how DNA can become enzymatically methylated, less is known regarding the active removal of 5mC at specific loci, aside from the potential for passive loss during cell division in the absence of DNMT activity. In 2009, a second form of DNA modification, that of 5-hydroxymethylcytosine (5hmC), was rediscovered, and enzymatic oxidation reactions (involving the ten-eleven translocation (TET) proteins) responsible for generating 5hmC from 5mC were identified [2]. Subsequent work has since identified the downstream, TET-dependent, oxidative derivatives of 5hmC, those of 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) [2]. This has led to the proposal of an active DNA demethylation cycle relying on the initial oxidation of 5mC into 5hmC, through the TET family of enzymes, before further oxidation to the 5fC and 5caC derivatives (Figure (Figure1a).1a). In contrast to the more abundant 5hmC modification, these lower-abundance downstream intermediates are proposed to be removed by base excision repair mechanisms that are highly reliant on the thymine DNA glycosylase (TDG) protein, ultimately resulting in the replacement of modified cytosine with non-modified cytosine.Open in a separate windowFigure 15fC and 5caC as TDG-mediated DNA demethylation intermediates. (a) The proposed cycle of DNA methylation (red arrow) and active demethylation (blue arrows). Enzymes are shown for each step along with required co-factors. (b) Visualization of the datasets derived by the two studies over the Hoxa1 and Hoxa2 genes (i) and the Igf2 gene (ii), both in wild-type (WT) and thymine DNA glycosylase (TDG) depleted/knockout mouse embryonic stem cells. 5fC data are plotted as both blue (He and colleagues [7]) and gold (Zhang and colleagues [6]) tracks, while 5caC, as reported by Zhang and colleagues [6], is displayed in red. Although both techniques profile the 5fC mark in WT and TDG depleted cells with a large degree of overlap (i), there are some regions that show technique-dependent enrichment (ii). Data have been filtered to remove background noise (reads <1 and <3 in the He and Zhang studies, respectively). Percentage GC plots (GC%) are shown in black, with Refseq predicted gene structures underneath. abs, antibodies; shTDG, TDG-depleting short hairpin RNA; TET, ten-eleven translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号