首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Tioxazafen is a seed-applied nematicide used in row crops. Currently, there are no data on nematode toxicity, nematode recovery, or effects of low concentrations of tioxazafen on nematode infection of a host root for Meloidogyne incognita or Rotylenchulus reniformis. Nematode toxicity and recovery experiments were conducted in water solutions of tioxazafen, while root infection assays were conducted on tomato. Nematode paralysis was observed after 24 hr of exposure at 27.0 µg/ml tioxazafen for both the nematode species. Based on an assay of nematode motility, 24-hr EC50 values of 57.69 µg/ml and 59.64 µg/ml tioxazafen were calculated for M. incognita and R. reniformis, respectively. Tioxazafen rates of 2.7 µg/ml and 27.0 µg/ml reduced the nematode hatch after 3 d of exposure for both the nematode species. There was no recovery in nematode motility after the 24-hr exposure of M. incognita and R. reniformis to their corresponding 48-hr EC50 values of 47.15 µg/ml and 47.25 µg/ml tioxazafen, respectively. Mortality of M. incognita continued to increase after 24 hr exposure, whereas R. reniformis mortality remain unchanged after nematodes were rinsed and removed for 48 hr from the tioxazafen solution. A 24-hr exposure to low concentrations of 0.38 to 47.15 µg/ml for M. incognita and 47.25 µg/ml for R. reniformis reduced the infectivity of each nematode species on tomato roots. The toxicity of tioxazafen was similar between nematode species; however, a greater rate of tioxazafen was needed to suppress R. reniformis infection of tomato than for M. incognita.  相似文献   

2.
Damage to cotton by Rotylenchulus reniformis below plow depth was evaluated in a sandy clay loam soil at Weslaco, Texas. In December 1999, 14 holes on 51-cm centers were dug 91 cm deep along the planting bed and adjacent furrow and 2 ml of 1,3-dichloropropene was placed 91, 61, and 30 cm deep as each hole was refilled and packed. This technique eliminated 96%, 81%, and 74% of R. reniformis down to 107 cm at distances 0, 25, and 51 cm laterally from the point of application (P ≤ 0.05), whereas chisel fumigation at 168 liters/ha 43 cm deep reduced nematode numbers only in the top 61 cm (P ≤ 0.001). Manual placement of fumigant increased yield 92%; chisel fumigation increased yield 88% (P ≤ 0.005). A second experiment in February 2001 placed fumigant 43 or 81 cm deep, or at both 43 and 81 cm. Holes alone had no significant effect on nematode density at planting, midseason or harvest, on root length density at midseason, or on cotton lint yield. Fumigant at 43 cm reduced nematode numbers above fumigant application depth at planting 94% (P ≤ 0.02), at midseason 37% (P ≤ 0.09), and at harvest 0%, increasing yield 57% (P ≤ 0.002). Fumigant at 81 cm reduced nematode numbers above fumigant application depth at planting 86% (P ≤ 0.02), at midseason 74% (P ≤ 0.02), and at harvest 48% (P ≤ 0.01), increasing yield 53% (P ≤ 0.002). Fumigating at both 43 and 81 cm reduced nematode numbers above 90 cm 94% at planting and 79% at midseason, increased midseason root-length density 14-fold below 76 cm, and doubled yield (P ≤ 0.02 in all cases).  相似文献   

3.
The reniform nematode (Rotylenchulus reniformis) causes significant cotton (Gossypium hirsutum) losses in the southeastern United States. The research objective was to describe the effects of two resistant G. barbadense lines (cultivar TX 110 and accession GB 713) on development and fecundity of reniform nematode. Nematode development and fecundity were evaluated on the resistant lines and susceptible G. hirsutum cultivar Deltapine 16 in three repeated growth chamber experiments. Nematode development on roots early and late in the infection cycle was measured at set intervals from 1 to 25 d after inoculation (DAI) and genotypes were compared based on the number of nematodes in four developmental stages (vermiform, swelling, reniform, and gravid). At 15, 20, and 25 DAI, egg production by individual females parasitizing each genotype was measured. Unique reniform nematode developmental patterns were noted on each of the cotton genotypes. During the early stages of infection, infection and development occurred 1 d faster on susceptible cotton than on the resistant genotypes. Later, progression to the reniform and gravid stages of development occurred first on the susceptible genotype, followed by G. barbadense cultivar TX 110, and finally G. barbadense accession GB 713. Egg production by individual nematodes infecting the three genotypes was similar. This study corroborates delayed development previously reported on G. barbadense cultivar TX 110 and is the first report of delayed infection and development associated with G. barbadense accession GB 713. The different developmental patterns in the resistant genotypes suggest that unique or additional loci may confer resistance in these two lines.  相似文献   

4.
Identification of resistance to reniform nematode (Rotylenchulus reniformis) is the first step in developing resistant soybean (Glycine max) cultivars that will benefit growers in the mid-South region of the United States. This study was conducted to identify soybean (G. max and G. soja) lines with resistance to this pathogen. Sixty-one wild and domestic soybean lines were evaluated in replicated growth chamber tests. Six previously untested soybean lines with useful levels of resistance to reniform nematode were identified in both initial screening and subsequent confirmation tests: released germplasm lines DS4-SCN05 (PI 656647) and DS-880 (PI 659348); accession PI 567516 C; and breeding lines DS97-84-1, 02011-126-1-1-2-1 and 02011-126-1-1-5-1. Eleven previously untested moderately susceptible or susceptible lines were also identified: released germplasm lines D68-0099 (PI 573285) and LG01-5087-5; accessions PI 200538, PI 416937, PI 423941, PI 437697, PI 467312, PI 468916, PI 594692, and PI 603751 A; and cultivar Stafford (PI 508269). Results of previously tested lines evaluated in the current study agreed with published reports 69.6% of the time for resistant lines and 87.5% of the time for susceptible lines. Soybean breeders may benefit from incorporating the newly identified resistant lines into their breeding programs.  相似文献   

5.
The effect o f soil temperature on parasitism and development of Rotylenchulus reniformis on resistant (''Peking'' and ''Custer'') and susceptible (''Hood'' and ''Lee'') soybean (Glycine max) cultivars was studied. Soil temperatures of 15, 21.5, 25, 29.5 and 36 C ± 1 C were maintained in temperature tanks in a greenhouse. R. reniformis developed best at 25 and 29.5 C. The female life cycle can be completed within 19 days after inoculation under favorable conditions at 29.5 C. Plant root growth was best at 21.5 C. During a 27-day period, no egg masses were present on nematodes feeding on roots grown at 15 and 36 C. Egg masses developed on Hood but not on Lee when nematodes were introduced into soil and maintained at 29.5 C for 2 days before raising the temperature to 36 C.  相似文献   

6.
Plant parasitic nematodes are major pests on upland cotton worldwide and in the United States. The reniform nematode, Rotylenchulus reniformis and the southern root-knot nematode Meloidogyne incognita are some of the most damaging nematodes on cotton in the United States. Current management strategies focus on reducing nematode populations with nematicides. The objective of this research was to integrate additional fertilizer and nematicide combinations into current practices to establish economical nematode management strategies while promoting cotton yield and profit. Microplot and field trials were run to evaluate fertilizer and nematicide combinations applied at the pinhead square (PHS) and first bloom (FB) plant growth stages to reduce nematode population density and promote plant growth and yield. Cost efficiency was evaluated based on profit from lint yields and chemical input costs. Data combined from 2019 and 2020 suggested a nematicide seed treatment (ST) ST + (NH4)2SO4 + Vydate® C-LV + Max-In® Sulfur was the most effective in increasing seed cotton yields in the R. reniformis microplot trials. In R. reniformis field trials, a nematicide ST + (NH4)2SO4 + Vydate® C-LV at PHS supported the largest lint yield and profit per hectare at $1176. In M. incognita field trials, a nematicide ST + 28-0-0-5 + Vydate® C-LV + Max-In® Sulfur at PHS and FB supported the largest lint yields and profit per hectare at $784. These results suggest that combinations utilizing fertilizers and nematicides applied together across the season in addition to current fertility management show potential to promote yield and profit in R. reniformis and M. incognita infested cotton fields.  相似文献   

7.
The effects of soil type, irrigation, and population density of Rotylenchulus reniformis on cotton were evaluated in a two-year microplot experiment. Six soil types, Fuquay sand, Norfolk sandy loam, Portsmouth loamy sand, Muck, Cecil sandy loam, and Cecil sandy clay, were arranged in randomized complete blocks with five replications. Each block had numerous plots previously inoculated with R. reniformis and two or more noninoculated microplots per soil type, one half of which were irrigated in each replicate for a total of 240 plots. Greatest cotton lint yields were achieved in the Muck, Norfolk sandy loam, and Portsmouth loamy sand soils. Cotton yield in the Portsmouth loamy sand did not differ from the Muck soil which averaged the greatest lint yield per plot of all soil types. Cotton yield was negatively related to R. reniformis PI (initial population density) in all soil types except for the Cecil sandy clay which had the highest clay content. Supplemental irrigation increased yields in the higher yielding Muck, Norfolk sandy loam, and Portsmouth loamy sand soils compared to the lower yielding Cecil sandy clay, Cecil sandy loam, and Fuquay sand soils. The Portsmouth sandy loam was among the highest yielding soils, and also supported the greatest R. reniformis population density. Cotton lint yield was affected more by R. reniformis Pi with irrigation in the Portsmouth loamy sand soil with a greater influence of Pi on lint yield in irrigated plots than other soils. A significant first degree PI × irrigation interaction for this soil type confirms this observation.  相似文献   

8.
Meloidogyne incognita- and Rotylenchulus reniformis-resistant new cotton cultivars have recently become available, giving growers a new option in nematode management. The objectives of this study were: (i) to determine the yield potential of the new cultivars PHY 360 W3FE (M. incognita-resistant) and PHY 332 W3FE (R. reniformis-resistant) in nematode-infested fields and (ii) to evaluate the effects of combining the nematicides Reklemel (fluazaindolizine), Vydate C-LV (oxamyl), and the seed treatment BIOST Nematicide 100 (heat killed Burkholderia rinojenses and its non-living spent fermentation media) with resistant cotton cultivars on nematode population levels and lint yield. Field experiments in 2020 and 2021 indicated M. incognita population levels were 73% lower on PHY 360 W3FE (R) and 80% lower for R. reniformis on the PHY 332 W3FE (R) at 40 days after planting. Nematode eggs per gram of root were further reduced an average of 86% after the addition of Reklemel and Vydate C-LV when averaging both cultivars over the two years. Tests with BIOST Nematicide 100 + Reklemel + Vydate C-LV (0.56 + 2.5 L/ha) in both M. incognita and R. reniformis fields produced higher lint yields. Overall, planting PHY 360 W3FE (R) and PHY 332 W3FE (R) improved yields an average of 364 kg/ha while limiting nematode population increases. The addition of the nematicides further increased yields 152 kg/ha of the nematode-resistant cultivars.  相似文献   

9.
The reniform nematode (Rotylenchulus reniformis) is an important pathogen of pigeonpea (Cajanus cajan). Forty‐six medium maturity (mature in 151–200 days at Patancheru, India) pigeonpea genotypes were evaluated for resistance and tolerance to the reniform nematode in greenhouse and field tests, over the period 1990–97. Each genotype was screened for number of nematode egg masses on a 1 (no egg mass = highly resistant) to 9 (> 50 egg masses = highly susceptible) scale. Plant biomass production in carbofurantreated plots was compared with that in non‐treated plots in a field naturally infested with R. reniformis. Pigeonpea genotypes C 11, ICPL 87119 and ICPL 270 were used as nematode susceptible checks. Genotypes with good plant growth, both in nematode‐free and nematode‐infested plots, were identified as tolerant and evaluated for plant growth and yield for at least three years. All the tested genotypes were susceptible (7 and 9 egg mass score). Single‐plant‐selections, based on plant vigour and yield, were made from genotypes showing tolerance to nematode infection. The level of tolerance was enhanced by plant‐to‐progeny row selection for plant vigour and seed yield in a nematode‐sick field for at least three years. The most promising nematode tolerant genotypes produced significantly greater yield and biomass than the locally grown pigeonpea cultivars in fields naturally infested with R. reniformis at two locations. Pigeonpea landraces are considered to be the most likely sources of tolerance to the nematode. These reniform nematode tolerant lines represent new germplasm and they are available in the genebank of pigeonpea at ICRISAT bearing accession numbers ICP 16329, ICP 16330, ICP 16331, ICP 16332, and ICP 16333.  相似文献   

10.
The possible impact of Rotylenchulus reniformis below plow depth was evaluated by measuring the vertical distribution of R. reniformis and soil texture in 20 symptomatic fields on 17 farms across six states. The mean nematode population density per field, 0 to 122 cm deep, ranged from 0.4 to 63 nematodes/g soil, and in 15 fields more than half of the R. reniformis present were below 30.5 cm, which is the greatest depth usually plowed by farmers or sampled by consultants. In 11 fields measured, root density was greatest in the top 15 cm of soil; however, roots consistently penetrated 92 to 122 cm deep by midseason, and in five fields in Texas and Louisiana the ratio of nematodes to root-length density within soil increased with depth. Repeated sampling during the year in Texas indicated that up to 20% of the nematodes in soil below 60 cm in the fall survived the winter. Differences between Baermann funnel and sugar flotation extraction methods were not important when compared with field-to-field differences in nematode populations and field-specific vertical distribution patterns. The results support the interpretation that R. reniformis below plow depth can significantly impact diagnosis and treatment of cotton fields infested with R. reniformis.  相似文献   

11.
More plants can be screened for reniform nematode resistance each year if the time involved can be shortened. In this study, the hypothesis that female counts are as efficient as egg counts in identifying resistant genotypes was tested. In two greenhouse experiments Gossypium genotypes which varied from resistant to susceptible to reniform nematode (Rotylenchulus reniformis) were compared to a susceptible control cultivar. Infested field soil served as the inoculum source for the first experiment, and vermiform stages extracted from greenhouse cultures were used to infest soil in the second experiment. Six replicates of each genotype were harvested 25 d after planting and swollen females were counted. The remaining plants were harvested 35 d after planting and eggs extracted from the roots were counted. Processing and counting times recorded in the first experiment were similar for both assessment methods, but 10 additional days were required for egg-based assessment. Contrast analyses showed that assessments based on females per gram of root were equivalent to assessments based on eggs per gram of root for the five genotypes tested in the first experiment and for an expanded set of 13 genotypes tested in the second experiment. The results indicated that either life stage can be used to screen for resistance.  相似文献   

12.
Observations on the development of reniform nematode (Rotylenchulus reniformis) on roots of Gossypium longicalyx, G. hirsutum, and two interspecific hybrids derived from them were made by light microscopy. Gossypium longicalyx is reported to be immune to reniform nematode, but the mechanism(s) for resistance are unknown. Penetration of G. longicalyx roots by female nematodes was confirmed, and incipient swelling of the females, indicating initiation of maturation of the reproductive system, was observed. Female maturation occurred up to the formation of a single embryo inside the female body but not beyond this point. In both hybrids, development was inhibited but progressed further than in the immune parent. Reactions ranged from highly compatible, with the formation of active syncytia and full development of females, to incompatible with little or no development of the female. Compatible plants showed characteristic hypertrophied cells, enlarged nuclei, dense cytoplasm, and partial dissolution of cell walls, whereas incompatible plant reactions included lignification of the cells adjacent to the nematode head, or the complete collapse and necrosis of the cells involved. The need to characterize reactions and to carefully select among the plants descended from the hybrids during the introgression process, as well as the importance of combining the results of reproduction tests with histological observation of the plant-nematode interactions, is discussed.  相似文献   

13.
Gossypium hirsutum, G. herbaceum, G. arboreum, G. barbadense, wild Gossypium spp., Hibiscus spp, and other Malvaceae were tested in the greenhouse to identify germplasm resistant to Rotylenchulus reniformis (Rr). Host resistance was based on Rr egg production per gram of root compared with known G. hirsutum susceptible ''Deltapine 16'' as check. G. longicalyx and Sida rhombifolia were nonhosts. High levels of resistance were found in G. stocksii, G. somalense, and G. barbadense ''Texas 110.'' Other cotton lines with potential value in breeding for Rr resistance were G. herbaceum P.I. 408775; G. arboreum P.I. 41895, P.I, 417891, CB 3839; and G. hirsutum 893. All these supported less than 20% of the egg production on the check. Seventy-three percent of the Hibiscus spp. tested were resistant. Female development and egg production reflected host resistance; healthy females and large egg masses were observed on susceptible plants, and degenerated females and small egg masses on resistant plants. Females penetrating nonhost G. longicalyx never matured to kidney shape.  相似文献   

14.
The interrelationships between reniform nematode (Rotylenchulus reniformis) and the cotton (Gossypium hirsutum) seedling blight fungus (Rhizoctonia solani) were studied using three isolates of R. solani, two populations of R. reniformis at multiple inoculum levels, and the cotton cultivars Dehapine 90 (DP 90) and Dehapine 41 (DP 41). Colonization of cotton hypocotyl tissue by R. solani resulted in increases (P ≤ 0.05) in nematode population densities in soil and in eggs recovered from the root systems in both 40- and 90-day-duration experiments. Increases in soil population densities resulted mainly from increases in juveniles. Enhanced reproduction of R. reniformis in the presence of R. solani was consistent across isolates (1, 2, and 3) of R. solani and populations (1 and 2) and inoculum levels (0.5, 2, 4, and 8 individuals/g of soil) of R. reniformis, regardless of cotton cultivar (DP 90 or DP 41). Severity of seedling blight was not influenced by the nematode. Rhizoctonia solani caused reductions (P ≤ 0.05) in cotton growth in 40- and 90-day periods. Rotylenchulus reniformis reduced cotton growth at 90 days. The relationship between nematode inoculum levels and plant growth reductions was linear. At 90 days, the combined effects of these pathogens were antagonistic to plant growth.  相似文献   

15.
Soybean cultivars varied in their response and tolerance to low initial Rotylenchulus reniforrnis populations of 10,000 nematodes/3.8 liters of soil, but a high initial population of 25,000 consistently reduced yields on resistant and susceptible cultivars by an average of 33.1%. At the 10,000 nematode inoculum level, dry seed yields of Hood decreased while those of Pickett increased significantly. Generally, total phosphorus decreased 11.1 and 11.5% and potassium increased 5.9 and 4.5% in seeds harvested from plants receiving initial inoculum levels of 5000 and 10,000 nematodes/pot, respectively. Little change in the total nitrogen content in seed was noted. Leucine content of seeds from infected plants was slightly less than from noninfected plants.  相似文献   

16.
The reniform nematode, Rotylenchulus reniformis Linford &Oliveira, has become a serious threat to cotton (Gossypium hirsutum L.) production in the United States during the past decade. The objective of this study is to isolate fungi from eggs of R. reniformis and select potential biological control agents for R. reniformis on cotton. Soil samples were collected from cotton fields located in Jefferson County, Arkansas. Eight genera of fungi were included in the 128 fungal isolates obtained, and among them were five strains of the nematophagous fungus ARF. The mtDNA RFLP pattern, colony growth characteristics, and pathogenicity indicate the five ARF isolates represent one described strain and one new strain. Light and electron microscopic observations suggest ARF is an active parasite of R. reniformis, with parasitism ranging from 48% to 79% in in vitro tests. Three greenhouse experiments demonstrated ARF successfully suppressed the number of reniform nematodes during the first and second generation of the nematode. Reductions in numbers of R. reniformis on the roots for the seven application rates of 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, and 0.5% ARF were 87%, 92%, 94%, 96%, 97%, 98%, and and 98%, respectively.  相似文献   

17.
Rotylenchulus reniformis was pathogenic to cantaloup (Cucumis melo ''Perlita'') under greenhouse conditions. These findings confirm field symptoms of cantaloup infected with R. reniformis. Histopathological studies show that the nematode penetrates the cortex perpendicular to the vascular system and comes to rest with the head against the endodermis in young roots. Feeding stimulated the pericycle to either side of the endodermal feeding cell and caused cell hypertrophy with enlargement of the nucleoli and granular thickening of the cytoplasm. In older roots where the endodermis had collapsed, the nematode fed directly into the pericycle and caused similar symptoms. Nematode development was more rapid at 27 C than at 21 C.  相似文献   

18.
Field experiments in 1992 and 1994 were conducted to determine the effect of Rotylenchulus reniformis, reniform nematode, on lint yield and fiber quality of 10 experimental breeding lines of cotton (Gossypium hirsutum) in untreated plots or plots fumigated with 1,3-dichloropropene. Controls were La. RN 1032, a germplasm line possessing some resistance to R. reniformis, and Stoneville 453, a cultivar that is susceptible to reniform nematode. Several breeding lines produced greater lint yields than Stoneville 453 or La. RN 1032 in both fumigated and untreated plots. Average lint yield suppression due to R. reniformis for six of the 10 breeding lines was less than half of the 52% yield reduction sustained by Stoneville 453. In growth chamber experiments, R. reniformis multiplication factors for La. RN 1032 and breeding lines N222-1-91, N320-2-91, and N419-1-91 were significantly lower than on Deltapine 16 and Stoneville 453 at 6 weeks after inoculation. R. reniformis populations increased by more than 50-fold on all entries within 10 weeks. In growth chambers, the breeding lines N220-1-92, N222-1-91, and N320-2-91 were resistant to Meloidoglyne incognita race 3; multiplication factors were ≤1.0 at both 6 weeks and 10 weeks after inoculation compared with 25.8 and 26.5 for Deltapine 16 at 6 and 10 weeks after inoculation, respectively, and 9.1 and 2.6 for Stoneville 453. Thus, the results indicate that significant advances have been made in developing improved cotton germplasm lines with the potential to produce higher yields in soils infested with R. reniformis or M. incogaita. In addition to good yield potential, germplasm lines N222-1-91 and N320-2-91 appear to possess low levels of resistance to R. reniformis and a high level of resistance to M. incognita. This germplasm combines high yield potential with significant levels of resistance to both R. reniformis and M. incognita.  相似文献   

19.
The reniform nematode Rotylenchulus reniformis was reduced in the upper 10 cm of soil with application of UHF electromagnetic energy. Bioassay of treated soil indicated no delayed effect on the population from the treatment. The population was significantly reduced by hot water treatments at 40 C for 10 min, and at 45 C for 5 and 10 min, 50 C and above killed all nematodes. Data were inconclusive as to whether the effect of UHF electromagnetic energy was thermal or nonthermal.  相似文献   

20.
Gossypium arboreum ''Nanking CB 1402'' possessed a high level of resistance to Rotylenchulus reniformis. Within 16 h, the nematode penetrated roots of resistant and susceptible cottons equally. After 36 h, significantly fewer nematodes were found in resistant roots. Larvae fed in either an endodermal or pericyclic cell and had no specificity for root tissue of a particular age. In roots of resistant G. arboreum ''1402,'' wall breakdown of pericyclic cells was evident after 3 d, endodermal and cortical cells collapsed, and the hypertrophied pericyclic cells disintegrated within 12 d. Cell walls immediately adjacent to the nematode''s head were thickened and more safranin positive in resistant than in susceptible cotton cultivars. Several other cultivars of G. arboreum were also resistant to R. reniformis, based on nematode fecundity and percent egg reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号