首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
To evaluate the feasibility of using transgenic rabbits expressing CCR5 and CD4 as a small-animal model of human immunodeficiency virus type 1 (HIV) disease, we examined whether the expression of the human chemokine receptor (CCR5) and human CD4 would render a rabbit cell line (SIRC) permissive to HIV replication. Histologically, SIRC cells expressing CD4 and CCR5 formed multinucleated cells (syncytia) upon exposure to BaL, a macrophagetropic strain of HIV that uses CCR5 for cell entry. Intracellular viral capsid p24 staining showed abundant viral gene expression in BaL-infected SIRC cells expressing CD4 and CCR5. In contrast, neither SIRC cells expressing CD4 alone nor murine 3T3 cells expressing CCR5 and CD4 exhibited significant expression of p24. These stably transfected rabbit cells were also highly permissive for the production of virions upon infection by two other CCR5-dependent strains (JR-CSF and YU-2) but not by a CXCR4-dependent strain (NL4-3). The functional integrity of these virions was demonstrated by the successful infection of human peripheral blood mononuclear cells (PBMC) with viral stocks prepared from these transfected rabbit cells. Furthermore, primary rabbit PBMC were found to be permissive for production of infectious virions after circumventing the cellular entry step. These results suggest that a transgenic rabbit model for the study of HIV disease may be feasible.  相似文献   

3.
The ability to express exogenous cDNAs while suppressing endogenous genes via RNAi represents an extremely powerful research tool with the most efficient non-transient approach being accomplished through stable viral vector integration. Unfortunately, since traditional restriction enzyme based methods for constructing such vectors are sequence dependent, their construction is often difficult and not amenable to mass production. Here we describe a non-sequence dependent Gateway recombination cloning system for the rapid production of novel lentiviral (pLEG) and retroviral (pREG) vectors. Using this system to recombine 3 or 4 modular plasmid components it is possible to generate viral vectors expressing cDNAs with or without inhibitory RNAs (shRNAmirs). In addition, we demonstrate a method to rapidly produce and triage novel shRNAmirs for use with this system. Once strong candidate shRNAmirs have been identified they may be linked together in tandem to knockdown expression of multiple targets simultaneously or to improve the knockdown of a single target. Here we demonstrate that these recombinant vectors are able to express cDNA and effectively knockdown protein expression using both cell culture and animal model systems.  相似文献   

4.
Caenorhabditis elegans, especially the N2 isolate, is an invaluable biological model system. Numerous additional natural C. elegans isolates have been shown to have unexpected genotypic and phenotypic variations which has encouraged researchers to use next generation sequencing methodology to develop a more complete picture of genotypic variations among the isolates. To understand the phenotypic effects of a genomic variation (GV) on a single gene, in a variation-rich genetic background, one should analyze that particular GV in a well understood genetic background. In C. elegans, the analysis is usually done in N2, which requires extensive crossing to bring in the GV. This can be a very time consuming procedure thus it is important to establish a fast and efficient approach to test the effect of GVs from different isolates in N2. Here we use a Mos1-mediated single-copy insertion (MosSCI) method for phenotypic assessments of GVs from the variation-rich Hawaiian strain CB4856 in N2. Specifically, we investigate effects of variations identified in the CB4856 strain on tac-1 which is an essential gene that is necessary for mitotic spindle elongation and pronuclear migration. We show the usefulness of the MosSCI method by using EU1004 tac-1(or402) as a control. or402 is a temperature sensitive lethal allele within a well-conserved TACC domain (transforming acidic coiled-coil) that results in a leucine to phenylalanine change at amino acid 229. CB4856 contains a variation that affects the second exon of tac-1 causing a cysteine to tryptophan change at amino acid 94 also within the TACC domain. Using the MosSCI method, we analyze tac-1 from CB4856 in the N2 background and demonstrate that the C94W change, albeit significant, does not cause any obvious decrease in viability. This MosSCI method has proven to be a rapid and efficient way to analyze GVs.  相似文献   

5.
We previously reported on a panel of HIV-1 clade B envelope (Env) proteins isolated from a patient treated with the CCR5 antagonist aplaviroc (APL) that were drug resistant. These Envs used the APL-bound conformation of CCR5, were cross resistant to other small-molecule CCR5 antagonists, and were isolated from the patient''s pretreatment viral quasispecies as well as after therapy. We analyzed viral and host determinants of resistance and their effects on viral tropism on primary CD4+ T cells. The V3 loop contained residues essential for viral resistance to APL, while additional mutations in gp120 and gp41 modulated the magnitude of drug resistance. However, these mutations were context dependent, being unable to confer resistance when introduced into a heterologous virus. The resistant virus displayed altered binding between gp120 and CCR5 such that the virus became critically dependent on the N′ terminus of CCR5 in the presence of APL. In addition, the drug-resistant Envs studied here utilized CCR5 very efficiently: robust virus infection occurred even when very low levels of CCR5 were expressed. However, recognition of drug-bound CCR5 was less efficient, resulting in a tropism shift toward effector memory cells upon infection of primary CD4+ T cells in the presence of APL, with relative sparing of the central memory CD4+ T cell subset. If such a tropism shift proves to be a common feature of CCR5-antagonist-resistant viruses, then continued use of CCR5 antagonists even in the face of virologic failure could provide a relative degree of protection to the TCM subset of CD4+ T cells and result in improved T cell homeostasis and immune function.Entry of human immunodeficiency virus (HIV) into target cells is a complex, multistep process that is initiated by interactions between the viral envelope (Env) protein gp120 and the host cell receptor CD4, which trigger conformational changes in gp120 that form and orient the coreceptor binding site (9, 24). Upon binding to coreceptor, which is either CCR5 or CXCR4 for primary HIV isolates, Env undergoes further conformational changes resulting in insertion of the gp41 fusion peptide into the host cell membrane and gp41-mediated membrane fusion (8, 15, 26). Targeting stages of the HIV entry process with antiretroviral drugs is a productive method of inhibiting HIV replication, as demonstrated by the potent antiviral effects of small-molecule CCR5 antagonists and fusion inhibitors (23, 35, 49). As with other antiretroviral drugs, HIV can develop resistance to entry inhibitors, and a detailed understanding of viral and host determinants of resistance will be critical to the optimal clinical use of these agents.The coreceptor binding site that is induced by CD4 engagement consists of noncontiguous regions in the bridging sheet and V3 loop of gp120 (4, 18, 42, 43, 50). Interactions between gp120 and CCR5 occur in at least two distinct areas: (i) the bridging sheet and the stem of the V3 loop interact with sulfated tyrosine residues in the N′ terminus of CCR5, and (ii) the crown of the V3 loop is thought to engage the extracellular loops (ECLs), particularly ECL2, of CCR5 (10-12, 14, 18, 28). Small-molecule CCR5 antagonists bind to a hydrophobic pocket in the transmembrane helices of CCR5 and exert their effects on HIV by altering the position of the ECLs, making them allosteric inhibitors of HIV infection (13, 31, 32, 46, 52). The conformational changes in CCR5 that are induced by CCR5 antagonists vary to some degree with different drugs, as evidenced by differential binding of antibodies and chemokines to various drug-bound forms of CCR5 (47, 54).CCR5 antagonists are unusual among antiretroviral agents in that they bind to a host protein rather than a viral target, and therefore the virus cannot directly mutate the drug binding site to evade pharmacologic pressure. Nevertheless, HIV can escape susceptibility to CCR5 antagonists. One mechanism by which this occurs is the use of the alternative HIV coreceptor, CXCR4. In vivo, this has most often been manifest as the outgrowth of R5/X4-tropic HIV isolates that were present in the patient''s circulating viral swarm prior to therapy (17, 27, 55). A second mechanism of HIV resistance to CCR5 antagonists is the use of drug-bound CCR5 as a coreceptor for entry. Resistant viruses that utilize drug-bound CCR5 have been identified following in vitro passaging with multiple CCR5 antagonists (1, 2, 22, 33, 36, 51, 56). Recently, we identified a panel of viral Envs able to use aplaviroc (APL)-bound CCR5 that were isolated from a patient (21, 48). The Envs from this patient were cross resistant to the CCR5 antagonists AD101, TAK779, SCH-C, and maraviroc. Surprisingly, this antiretroviral-naïve patient harbored Envs resistant to aplaviroc prior to the initiation of therapy. In the present study, we have examined viral and host factors that contribute to aplaviroc resistance and examined the consequences of resistance for viral tropism. Aplaviroc resistance determinants were located within the V3 loop of gp120, although additional residues diffusely spread throughout the gp120 and gp41 proteins modulated the magnitude of drug resistance. The resistant virus displayed altered interactions between gp120 and CCR5 such that the virus became critically dependent upon the N′ terminus of drug-bound CCR5. This differential recognition of CCR5 in the presence of aplaviroc was also associated with increased dependence on a higher CCR5 receptor density for efficient virus infection and a tropism shift toward effector memory cells on primary CD4+ T cells.  相似文献   

6.
7.
8.
HIV-1 has maximized its utilization of syndecans. It uses them as in cis receptors to infect macrophages and as in trans receptors to infect T-lymphocytes. In this study, we investigated at a molecular level the mechanisms that control HIV-1-syndecan interactions. We found that a single conserved arginine (Arg-298) in the V3 region of gp120 governs HIV-1 binding to syndecans. We found that an amine group on the side chain of this residue is necessary for syndecan utilization by HIV-1. Furthermore, we showed that HIV-1 binds syndecans via a 6-O sulfation, demonstrating that this binding is not the result of random interactions between basic residues and negative charges, but the result of specific contacts between gp120 and a well defined sulfation in syndecans. Surprisingly, we found that Arg-298, which mediates HIV-1 binding to syndecans, also mediates HIV-1 binding to CCR5. We postulated that HIV-1 recognizes similar motifs on syndecans and CCR5. Supporting this hypothesis, we obtained several lines of evidence that suggest that the 6-O sulfation recognized by HIV-1 on syndecans mimics the sulfated tyrosines recognized by HIV-1 in the N terminus of CCR5. Our finding that CCR5 and syndecans are exploited by HIV-1 via a single determinant echoes the mechanisms by which chemokines utilize these two disparate receptors and suggests that the gp120/chemokine mimicry may represent a common strategy in microbial pathogenesis.  相似文献   

9.
High-throughput sequencing platforms provide an approach for detecting rare HIV-1 variants and documenting more fully quasispecies diversity. We applied this technology to the V3 loop-coding region of env in samples collected from 4 chronically HIV-infected subjects in whom CCR5 antagonist (vicriviroc [VVC]) therapy failed. Between 25,000–140,000 amplified sequences were obtained per sample. Profound baseline V3 loop sequence heterogeneity existed; predicted CXCR4-using populations were identified in a largely CCR5-using population. The V3 loop forms associated with subsequent virologic failure, either through CXCR4 use or the emergence of high-level VVC resistance, were present as minor variants at 0.8–2.8% of baseline samples. Extreme, rapid shifts in population frequencies toward these forms occurred, and deep sequencing provided a detailed view of the rapid evolutionary impact of VVC selection. Greater V3 diversity was observed post-selection. This previously unreported degree of V3 loop sequence diversity has implications for viral pathogenesis, vaccine design, and the optimal use of HIV-1 CCR5 antagonists.  相似文献   

10.
目的 利用CRISPR/Cas9-SAM系统构建CHD5基因过表达慢病毒载体,并分析其对膀胱癌细胞T24增殖,迁移和侵袭能力的影响.方法: 针对CHD5基因设计3个sgRNA(sgRNA-1,sgRNA-2,sgRNA-3),将sgRNA连入LV-sgRNA-MS2-P65-HSF1-Neo载体,经293T细胞包装后获得高滴度慢病毒颗粒.病毒以MOI=10感染膀胱癌细胞T24.RT-qPCR和Western blot分别检测感染病毒后T24细胞CHD5 mRNA和蛋白表达水平,CCK8实验,流式分析,划痕实验和Transwell实验检测CHD5过表达对T24细胞增殖,凋亡,迁移和侵袭能力的影响.结果: 成功构建CHD5过表达慢病毒载体.慢病毒感染T24细胞后,RT-qPCR和Western blot证实,T24细胞CHD5的mRNA和蛋白表达水平显著高于空白组和阴性对照组(P<0.05),并且sgRNA-3-MS2-P65-HSF1序列的作用最为显著.CCK8及流式分析结果显示,过表达CHD5抑制T24细胞增殖,促进凋亡,与对照组相比,均有统计学意义(P<0.001).划痕和Transwell实验结果表明,过表达CHD5可抑制T24细胞迁移和侵袭能力(P<0.01).结论: 成功构建CHD5过表达慢病毒.过表达CHD5能促进膀胱癌细胞T24凋亡,抑制其增殖,迁移和侵袭能力.  相似文献   

11.
Malaria affects 300 million people worldwide every year and is endemic in 22 countries in the Americas where transmission occurs mainly in the Amazon Region. Most malaria cases in the Americas are caused by Plasmodium vivax, a parasite that is almost impossible to cultivate in vitro, and Anopheles aquasalis is an important malaria vector. Understanding the interactions between this vector and its parasite will provide important information for development of disease control strategies. To this end, we performed mRNA subtraction experiments using A. aquasalis 2 and 24 hours after feeding on blood and blood from malaria patients infected with P. vivax to identify changes in the mosquito vector gene induction that could be important during the initial steps of infection. A total of 2,138 clones of differentially expressed genes were sequenced and 496 high quality unique sequences were obtained. Annotation revealed 36% of sequences unrelated to genes in any database, suggesting that they were specific to A. aquasalis. A high number of sequences (59%) with no matches in any databases were found 24 h after infection. Genes related to embryogenesis were down-regulated in insects infected by P. vivax. Only a handful of genes related to immune responses were detected in our subtraction experiment. This apparent weak immune response of A. aquasalis to P. vivax infection could be related to the susceptibility of this vector to this important human malaria parasite. Analysis of some genes by real time PCR corroborated and expanded the subtraction results. Taken together, these data provide important new information about this poorly studied American malaria vector by revealing differences between the responses of A. aquasalis to P. vivax infection, in relation to better studied mosquito-Plasmodium pairs. These differences may be important for the development of malaria transmission-blocking strategies in the Americas.  相似文献   

12.
At the CC (beta) chemokine receptor 2 (CCR2) and CCR5 loci, combinations of common single-nucleotide polymorphisms (SNPs) and a 32-bp deletion (Delta32) form nine stable haplotypes (designated A through G*2). The distribution of these CCR2-CCR5 haplotypes was examined among 703 participants in the Multicenter AIDS Cohort Study (MACS), the District of Columbia Gay (DCG) Study, and the San Francisco Men's Health Study (SFMHS). Highly exposed and persistently seronegative (HEPS; n = 90) Caucasian men from MACS more frequently carried heterozygous G*2 (Delta32) genotypes (especially A/G*2) and less frequently carried the homozygous E/E genotype compared with 469 Caucasian seroconverters (SCs) from the same cohort (P = 0.004 to 0.042). Among 341 MACS Caucasian SCs with 6- to 12-month human immunodeficiency virus type 1 (HIV-1) seroconversion intervals and no potent antiretroviral therapy, mean plasma HIV-1 RNA level during the initial 42 months after seroconversion was higher in carriers of the E/E genotype and lower in those with the 64I-bearing haplotype F*2 or the Delta32-bearing haplotype G*2 (and especially genotypes A/G*2 and F*2/G*2). A multivariable model containing these CCR markers showed significant composite effects on HIV-1 RNA at each of four postconversion intervals (P = 0.0004 to 0.050). In other models using time to AIDS as the endpoint, the same markers showed more modest contributions (P = 0.08 to 0.24) to differential outcome during 11.5 years of follow-up. Broadly consistent findings in the larger MACS Caucasian SCs and the smaller groups of MACS African-American SCs and the DCG and SFMHS Caucasian SCs indicate that specific CCR2-CCR5 haplotypes or genotypes mediate initial acquisition of HIV-1 infection, early host-virus equilibration, and subsequent pathogenesis.  相似文献   

13.
14.
Genome wide association studies revealed an association of the single nucleotide polymorphism rs11708067 within the ADCY5 gene—encoding adenylate cyclase 5—with increased type 2 diabetes (T2D) risk and higher fasting glucose. However, it remains unclear whether the association between ADCY5 variants and glycemic traits may involve adipose tissue (AT) related mechanisms. We therefore tested the hypothesis that ADCY5 mRNA expression in human and mouse AT is related to obesity, fat distribution, T2D in humans and high fat diet (HFD) in mice. We measured ADCY5 mRNA expression in paired samples of visceral and subcutaneous adipose tissue from 244 individuals with a wide range of body weight and parameters of hyperglycemia, which have been genotyped for rs11708067. In addition, AT ADCY5 mRNA was assessed in C57BL/6NTac which underwent a 10 weeks standard chow (n = 6) or high fat diet (HFD, n = 6). In humans, visceral ADCY5 expression is significantly higher in obese compared to lean individuals. ADCY5 expression correlates with BMI, body fat mass, circulating leptin, fat distribution, waist and hip circumference, but not with fasting plasma glucose and HbA1c. Adcy5 expression in mouse AT is significantly higher after a HFD compared to chow (p<0.05). Importantly, rs11708067 is not associated with ADCY5 mRNA expression levels in either fat depot in any of the genetic models tested. Our results suggest that changes in AT ADCY5 expression are related to obesity and fat distribution, but not with impaired glucose metabolism and T2D. However, altered ADCY5 expression in AT does not seem to be the mechanism underlying the association between rs11708067 and increased T2D risk.  相似文献   

15.

Background

Some single nucleotide polymorphisms (SNP), located in Toll-like receptor (TLR) genes, were reported to be associated with human cytomegalovirus (HCMV) infections. The study was aimed to assess the correlation of SNPs at TLR4 and TLR9 genes with the occurrence of congenital cytomegaly, based on available samples.

Methods

Reported case-control study included both HCMV infected and non-infected fetuses and newborns. The specimens were classified to the molecular analyses, based on serological features of the recent infection and HCMV DNAemia in body fluids. TLR SNPs were studied, using multiplex nested PCR-RFLP assay, and determined genotypes were confirmed by sequencing. Hardy-Weinberg equilibrium was assessed for the identified genotypes. The linkage disequilibrium was also estimated for TLR4 SNPs. A relationship between the status of TLR genotypes and congenital cytomegaly development was estimated, using a logistic regression model.

Results

Hardy Weinberg equilibrium was observed for almost all SNPs, both infected and non-infected patients, with exception of TLR4 896 A>G polymorphism in the control group (P≤0.050). TLR4 896 A>G and 1196 C>T SNPs were found in linkage disequilibrium in both study groups (P≤0.050). The CC genotype at TLR4 1196 SNP and the GA variant at TLR9 2848 G>A SNP were significantly associated with HCMV infection (P≤0.050). The risk of congenital cytomegaly was higher in heterozygotes at TLR9 SNP than in the carriers of other genotypic variants at the reported locus (OR 4.81; P≤0.050). The GC haplotype at TLR4 SNPs and GCA variants at TLR4 and TLR9 SNPs were significantly associated with HCMV infection (P≤0.0001). The ACA variants were more frequent among fetuses and neonates with symptomatic, rather than asymptomatic cytomegaly (P≤0.0001).

Conclusions

TLR4 and TLR9 polymorphisms may contribute to the development of congenital infection with HCMV in fetuses and neonates. The TLR9 2848 GA heterozygotic status possibly predisposes to HCMV infection, increasing the risk of congenital cytomegaly development.  相似文献   

16.
Integration into the host genome is an essential step in the HIV-1 life cycle. However, the host genome sequence that is favored by HIV-1 during integration has never been documented. Here, we report that CD27, a T cell activation gene, includes a sequence that is a target for in vitro HIV-1 cDNA integration. This sequence has a high affinity for integrase, and the target nucleotides responsible for this higher affinity were identified using a crystal microbalance assay. In experiments involving a segment of the CD27 gene, integration converged in the target nucleotides and flanking sequence DNA, indicating that integration is probably dependent upon the secondary structure of the substrate DNA. Notably, decoy modified CD27 sequence DNAs in which the target nucleotides were replaced suppressed integration when accompanying the original CD27 sequence DNA. Our identified CD27 sequence DNA is useful for investigating the biochemistry of integrase and for in vitro assessment of integrase-binding inhibitors.  相似文献   

17.

Background

Circadian clocks guide the metabolic, cell-division, sleep-wake, circadian and seasonal cycles. Abnormalities in these clocks may be a health hazard. Circadian clock gene polymorphisms have been linked to sleep, mood and metabolic disorders. Our study aimed to examine polymorphisms in four key circadian clock genes in relation to seasonal variation, reproduction and well-being in a sample that was representative of the general population, aged 30 and over, living in Finland.

Methodology/Principal Findings

Single-nucleotide polymorphisms in the ARNTL, ARNTL2, CLOCK and NPAS2 genes were genotyped in 511 individuals. 19 variants were analyzed in relation to 31 phenotypes that were assessed in a health interview and examination study. With respect to reproduction, women with ARNTL rs2278749 TT genotype had more miscarriages and pregnancies, while NPAS2 rs11673746 T carriers had fewer miscarriages. NPAS2 rs2305160 A allele carriers had lower Global Seasonality Scores, a sum score of six items i.e. seasonal variation of sleep length, social activity, mood, weight, appetite and energy level. Furthermore, carriers of A allele at NPAS2 rs6725296 had greater loadings on the metabolic factor (weight and appetite) of the global seasonality score, whereas individuals with ARNTL rs6290035 TT genotype experienced less seasonal variation of energy level.

Conclusions/Significance

ARNTL and NPAS2 gene variants were associated with reproduction and with seasonal variation. Earlier findings have linked ARNTL to infertility in mice, but this is the first time when any polymorphism of these genes is linked to fertility in humans.  相似文献   

18.
The retroviral vector systems that are in common use for gene therapy are designed to infect cells expressing either of two widely expressed phosphate transporter proteins, Pit1 or Pit2. Subgroup B feline leukemia viruses (FeLV-Bs) use the gibbon ape leukemia virus receptor, Pit1, as a receptor for entry. Our previous studies showed that some chimeric envelope proteins encoding portions of FeLV-B could also enter cells by using a related receptor protein, Pit2, which serves as the amphotropic murine leukemia virus receptor (S. Boomer, M. Eiden, C. C. Burns, and J. Overbaugh, J. Virol. 71:8116--8123, 1997). Here we show that an arginine at position 73 within variable region A (VRA) of the FeLV-B envelope surface unit (SU) is necessary for viral entry into cells via the human Pit2 receptor. However, C-terminal SU sequences have a dominant effect in determining human Pit2 entry, even though this portion of the protein is outside known receptor binding domains. This suggests that a combination of specific VRA sequences and C-terminal sequences may influence interactions between FeLV-B SU and the human Pit2 receptor. Binding studies suggest that the C-terminal sequences may affect a postbinding step in viral entry via the Pit2 receptor, although in all cases, binding of FeLV-B SU to human Pit2 was weak. In contrast, neither the arginine 73 nor specific C-terminal sequences are required for efficient binding or infection with Pit1. Taken together, these data suggest that different residues in SU may interact with these two receptors. The specific FeLV-Bs described here, which can enter cells using either human Pit receptor, may be useful as envelope pseudotypes for viruses used in gene therapy.  相似文献   

19.
Cell surface receptors exploited by human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) for infection are major determinants of tropism. HIV-1 usually requires two receptors to infect cells. Gp120 on HIV-1 virions binds CD4 on the cell surface, triggering conformational rearrangements that create or expose a binding site for a seven-transmembrane (7TM) coreceptor. Although HIV-2 and SIV strains also use CD4, several laboratory-adapted HIV-2 strains infect cells without CD4, via an interaction with the coreceptor CXCR4. Moreover, the envelope glycoproteins of SIV of macaques (SIV(MAC)) can bind to and initiate infection of CD4(-) cells via CCR5. Here, we show that most primary HIV-2 isolates can infect either CCR5(+) or CXCR4(+) cells without CD4. The efficiency of CD4-independent infection by HIV-2 was comparable to that of SIV, but markedly higher than that of HIV-1. CD4-independent HIV-2 strains that could use both CCR5 and CXCR4 to infect CD4(+) cells were only able to use one of these receptors in the absence of CD4. Our observations therefore indicate (i) that HIV-2 and SIV envelope glycoproteins form a distinct conformation that enables contact with a 7TM receptor without CD4, and (ii) the use of CD4 enables a wider range of 7TM receptors to be exploited for infection and may assist adaptation or switching to new coreceptors in vivo. Primary CD4(-) fetal astrocyte cultures expressed CXCR4 and supported replication by the T-cell-line-adapted ROD/B strain. Productive infection by primary X4 strains was only triggered upon treatment of virus with soluble CD4. Thus, many primary HIV-2 strains infect CCR5(+) or CXCR4(+) cell lines without CD4 in vitro. CD4(-) cells that express these coreceptors in vivo, however, may still resist HIV-2 entry due to insufficient coreceptor concentration on the cell surface to trigger fusion or their expression in a conformation nonfunctional as a coreceptor. Our study, however, emphasizes that primary HIV-2 strains carry the potential to infect CD4(-) cells expressing CCR5 or CXCR4 in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号