首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
本研究拟基于最近的miRNA报道,结合前期关于肌肉生长抑素(myostatin, MSTN)的相关研究,探究多囊卵巢综合症(ploycystic ovary syndrome, PCOS)患者血清miRNA和生长抑素的表达及其相关临床病理特征。本研究选取160例在湘南学院附属医院妇科就诊的女性为研究对象,通过PCR、ELISA等方法比较PCOS患者血清miRNA和生长抑素的表达情况,并且分析其相关临床病理特征。结果显示,通过PCR的方法发现mi RNA-93、mi RNA-223在PCOS患者的血清中显著升高,而mi RNA-4522、mi RNA-6767-5p和mi RNA-324-3p则表达下降。本研究建立了3个miRNA的预测模型,并证实预测模型在筛选组和验证组中有很好的敏感性和特异性,可以有效区分PCOS患者和正常人群,但研究结果也发现,miRNA模型结合MSTN没有更好的诊断价值。  相似文献   

2.
Aberrant expression of microRNAs (miRNAs), a class of small non-coding regulatory RNAs, has been implicated in the development and progression of melanoma. However, the precise mechanistic role of many of these miRNAs remains unclear. We have investigated the functional role of miR-7-5p in melanoma, and demonstrate that miR-7-5p expression is reduced in metastatic melanoma-derived cell lines compared with primary melanoma cells, and that when ectopically expressed miR-7-5p significantly inhibits melanoma cell migration and invasion. Additionally, we report that insulin receptor substrate-2 (IRS-2) is a target of miR-7-5p in melanoma cells, and using RNA interference (RNAi) we provide evidence that IRS-2 activates protein kinase B (Akt), and promotes melanoma cell migration. Thus, miR-7-5p may represent a novel tumor suppressor miRNA in melanoma, acting at least in part via its inhibition of IRS-2 expression and oncogenic Akt signaling.  相似文献   

3.
Endogenous small RNAs (miRNAs) regulate gene expression by mechanisms conserved across metazoans. While the number of verified human miRNAs is still expanding, only few have been functionally annotated. To perform genetic screens for novel functions of miRNAs, we developed a library of vectors expressing the majority of cloned human miRNAs and created corresponding DNA barcode arrays. In a screen for miRNAs that cooperate with oncogenes in cellular transformation, we identified miR-372 and miR-373, each permitting proliferation and tumorigenesis of primary human cells that harbor both oncogenic RAS and active wild-type p53. These miRNAs neutralize p53-mediated CDK inhibition, possibly through direct inhibition of the expression of the tumor-suppressor LATS2. We provide evidence that these miRNAs are potential novel oncogenes participating in the development of human testicular germ cell tumors by numbing the p53 pathway, thus allowing tumorigenic growth in the presence of wild-type p53.  相似文献   

4.
The aim of this study was to identify new microRNAs (miRNAs) that are modulated during the differentiation of mesenchymal stem cells (MSCs) toward chondrocytes. Using large scale miRNA arrays, we compared the expression of miRNAs in MSCs (day 0) and at early time points (day 0.5 and 3) after chondrogenesis induction. Transfection of premiRNA or antagomiRNA was performed on MSCs before chondrogenesis induction and expression of miRNAs and chondrocyte markers was evaluated at different time points during differentiation by RT-qPCR. Among miRNAs that were modulated during chondrogenesis, we identified miR-574-3p as an early up-regulated miRNA. We found that miR-574-3p up-regulation is mediated via direct binding of Sox9 to its promoter region and demonstrated by reporter assay that retinoid X receptor (RXR)α is one gene specifically targeted by the miRNA. In vitro transfection of MSCs with premiR-574-3p resulted in the inhibition of chondrogenesis demonstrating its role during the commitment of MSCs towards chondrocytes. In vivo, however, both up- and down-regulation of miR-574-3p expression inhibited differentiation toward cartilage and bone in a model of heterotopic ossification. In conclusion, we demonstrated that Sox9-dependent up-regulation of miR-574-3p results in RXRα down-regulation. Manipulating miR-574-3p levels both in vitro and in vivo inhibited chondrogenesis suggesting that miR-574-3p might be required for chondrocyte lineage maintenance but also that of MSC multipotency.  相似文献   

5.
王丹凤  杨广  陈文锋 《昆虫学报》2019,62(6):769-778
非编码RNA(ncRNA)是生物体细胞内一类重要的调控分子,其介导的昼夜节律调控日益受到研究者的重视。本文主要以黑腹果蝇Drosophila melanogaster和哺乳动物的相关研究为背景,阐述了微小RNA(miRNA)和长链非编码RNA(lncRNA)对昼夜节律的调控。miRNA介导的昼夜节律调控包括:生物体内(尤其是钟神经元中)具有节律性表达的miRNA;输入系统和miRNA存在相互调控,这主要是通过光照这个授时因子起作用;miRNA可直接调控核心振荡器,还可以调控其他基因而间接影响到核心振荡器;miRNA对输出系统的调控主要集中在代谢取食节律、运动节律、睡眠节律等。昼夜节律可调控lncRNA的表达,同时lncRNA也可调控昼夜节律,且lncRNA对基因调控范围广,作用机制复杂,这些都具有广阔的研究前景。本文将有助于进一步深入研究ncRNA对昼夜节律的调控。  相似文献   

6.
Members of the miRNA-200 family regulate olfactory neurogenesis   总被引:4,自引:0,他引:4  
MicroRNAs (miRNAs) are highly expressed in vertebrate neural tissues, but the contribution of specific miRNAs to the development and function of different neuronal populations is still largely unknown. We report that miRNAs are required for terminal differentiation of olfactory precursors in both mouse and zebrafish but are dispensable for proper function of mature olfactory neurons. The repertoire of miRNAs expressed in olfactory tissues contains over 100 distinct miRNAs. A subset, including the miR-200 family, shows high olfactory enrichment and expression patterns consistent with a role during olfactory neurogenesis. Loss of function of the miR-200 family phenocopies the terminal differentiation defect observed in absence of all miRNA activity in olfactory progenitors. Our data support the notion that vertebrate tissue differentiation is controlled by conserved subsets of organ-specific miRNAs in both mouse and zebrafish and provide insights into control mechanisms underlying olfactory differentiation in vertebrates.  相似文献   

7.
Epigenetic and posttranslational modifications of the expression of cell cycle-relevant genes or proteins like p21, e.g., by miRNAs are crucial mechanisms in the development or prevention of colon cancer. The present study investigated the influence of butyrate and trichostatin A (TSA) as histone deacetylase inhibitors on the expression of colon cancer-relevant miRNA (miR-135a, miR-135b, miR-24, miR-106b, miR-let-7a) in LT97 colon adenoma cells as a model of an early stage of colon carcinogenesis. The impact of distinct miRNAs (miR-106b, miR-135a) on butyrate-mediated regulation of p21 and Cyclin D2 gene and protein expression as well as the effect on LT97 cell proliferation (non-transfected, miR-106b and miR-135a mimic transfected) was analyzed. Butyrate and partial TSA reduced the expression of miR-135a, miR-135b, miR-24 and miR-let-7a (~0.5-fold, 24 h) and miR-24, miR-106b and miR-let-7a (~0.5–0.7-fold, 48 h) in LT97 cells. Levels of p21 mRNA and protein were significantly increased by butyrate and TSA (~threefold and 4.5-fold, respectively, 24 h) in non-transfected but not in miR-106b transfected LT97 cells. Levels of Cyclin D2 mRNA were significantly reduced by butyrate and TSA (~0.3-fold, 24 h) in non-transfected and miR-135a-transfected LT97 cells, whereas protein levels were predominantly not influenced. MiR-106b and miR-135a significantly reduced butyrate-/TSA-mediated inhibition of LT97 cell proliferation (72 h). These results indicate that butyrate is able to modify colon cancer-relevant miRNAs like miR-106b and miR-135a which are involved in the regulation of cell cycle-relevant genes like p21 and might influence inhibition of adenoma cell proliferation.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-015-0500-4) contains supplementary material, which is available to authorized users.  相似文献   

8.
The miRNA-29 family of microRNAs (miRNAs), including miR-29a, miR-29b and miR-29c, was recently reported to be aberrantly expressed in multiple cancers. Increasing evidence shows that the abnormal expression of miR-29 family is associated with tumorigenesis and cancer progression, making miR-29s a well-analyzed group of miRNAs in cancer research. Here, in this review we aim to provide an overview of the role of miR-29 family in the pathophysiologic changes of cancer cells and the epigenetic and immune regulation through the biological function of miR-29s.  相似文献   

9.
10.
11.

Background

Recently, it has been reported that specific microRNA (miRNA) levels are elevated in serum and can be used as biomarkers in patients with cardiovascular diseases. However, miRNAs expression profiles and their sources in pericardial fluid (PF) are unclear.

Methods and Results

The purpose of this study was to identify the levels of miRNAs in PF in relation to those in the serum in patients undergoing cardiac surgery. Serum (S) and PF from patients undergoing coronary artery bypass graft (CABG) due to stable angina pectoris (sAP) and unstable AP (uAP) and aortic valve replacement due to aortic stenosis (AS) were analyzed for the detection of miRNAs. We named these samples S-sAP, S-uAP, S-AS, PF-sAP, PF-uAP, and PF-AS, respectively. We first measured the levels of miR-423-5p, which was recognized previously as a biomarker for heart failure. miR-423-5p levels were significantly higher in PF than serum. Although there was no difference in miR-423-5p levels among the PF-AS, PF-sAP, and PF-uAP, its levels were significantly elevated in S-uAP compared with those in S-AS and S-sAP. In order to clarify the source of miR-423-5p in PF, we measured the levels of muscle-enriched miR-133a and vascular-enriched miR-126 and miR-92a in the same samples. miR-133a levels were significantly higher in serum than in PF, and it was elevated in S-uAP compared with S-AS. miR-126 level was significantly increased in serum compared with PF, and the level of miR-92a the similar tendency. miR-423-5p is located in the first intron of NSRP1. There is another miRNA, miR-3184, encoded in the opposite direction in the same region. In vitro experiments indicated that the duplex of miR-423-5p and miR-3184-3p was more resistant to RNase than the duplex of miR-423-5p and miR-133-3p, which may help to stabilize miR-423-5p in the PF.

Conclusions

Our results suggested that miR-423-5p is enriched in PF, and serum miR-423-5p may be associate with uAP. Its expression pattern was different to that of muscle- and vascular-enriched miRNAs, miR-133a, miR-126, and miR-92a.  相似文献   

12.
13.

Background

Circulating microRNAs (miRNAs) have been described as potential diagnostic biomarkers in cardiovascular disease and in particular, coronary artery disease (CAD). Few studies were undertaken to perform analyses with regard to risk stratification of future cardiovascular events. miR-126, miR-197 and miR-223 are involved in endovascular inflammation and platelet activation and have been described as biomarkers in the diagnosis of CAD. They were identified in a prospective study in relation to future myocardial infarction.

Objectives

The aim of our study was to further evaluate the prognostic value of these miRNAs in a large prospective cohort of patients with documented CAD.

Methods

Levels of miR-126, miR-197 and miR-223 were evaluated in serum samples of 873 CAD patients with respect to the endpoint cardiovascular death. miRNA quantification was performed using real time polymerase chain reaction (RT-qPCR).

Results

The median follow-up period was 4 years (IQR 2.78–5.04). The median age of all patients was 64 years (IQR 57–69) with 80.2% males. 38.9% of the patients presented with acute coronary syndrome (ACS), 61.1% were diagnosed with stable angina pectoris (SAP). Elevated levels of miRNA-197 and miRNA-223 reliably predicted future cardiovascular death in the overall group (miRNA-197: hazard ratio (HR) 1.77 per one standard deviation (SD) increase (95% confidence interval (CI) 1.20; 2.60), p = 0.004, C-index 0.78; miRNA-223: HR 2.23 per one SD increase (1.20; 4.14), p = 0.011, C-index 0.80). In ACS patients the prognostic power of both miRNAs was even higher (miRNA-197: HR 2.24 per one SD increase (1.25; 4.01), p = 0.006, C-index 0.89); miRA-223: HR 4.94 per one SD increase (1.42; 17.20), p = 0.012, C-index 0.89).

Conclusion

Serum-derived circulating miRNA-197 and miRNA-223 were identified as predictors for cardiovascular death in a large patient cohort with CAD. These results reinforce the assumption that circulating miRNAs are promising biomarkers with prognostic value with respect to future cardiovascular events.  相似文献   

14.
15.
Liver fibrosis is a progressive disease accompanied by the deposition of extracellular matrix (ECM). Numerous reports have demonstrated that alterations in the expression of microRNAs (miRNAs) are related to liver disease. However, the effect of individual miRNAs on liver fibrosis has not been studied. Hepatic stellate cells (HSCs), being responsible for producing ECM, exert an important influence on liver fibrosis. Then, microarray analysis of non-activated and activated HSCs induced by transforming growth factor β1 (TGF-β1) showed that miR-130b-5p expression was strongly up-regulated during HSC activation. Moreover, the progression of liver fibrosis had a close connection with the expression of miR-130b-5p in different liver fibrosis mouse models. Then, we identified that there were specific binding sites between miR-130b-5p and the 3′ UTR of Sirtuin 4 (SIRT4) via a luciferase reporter assay. Knockdown of miR-130b-5p increased SIRT4 expression and ameliorated liver fibrosis in mice transfected with antagomiR-130b-5p oligos. In general, our results suggested that miR-130b-5p promoted HSC activation by targeting SIRT4, which participates in the AMPK/TGF-β/Smad2/3 signalling pathway. Hence, regulating miR-130b-5p maybe serve as a crucial therapeutic treatment for hepatic fibrosis.  相似文献   

16.
17.
microRNAs(miRNAs)是一类长度为17~25 nt,进化上保守的非编码单链小RNA,成熟的miRNAs通过碱基互补配对的方式识别靶mRNA,并根据互补程度介导沉默复合体降解靶mRNA或者阻遏靶mRNA的翻译。miR-155是miRNAs家族中的典型代表,其不仅参与调控肿瘤细胞的增殖、分化和凋亡,而且在微生物感染过程及免疫炎症反应中也发挥着重要作用。将对miR-155在常见的几种病原微生物感染过程中发挥的作用做系统综述。  相似文献   

18.
19.
Disorders mainly caused by ischemia-reperfusion (I/R), including stroke and myocardial infarction, is linked to debilitating health conditions and death. Recent research indicates that microRNAs (miRNAs) mediate the process of ischemic pathology. This study investigated the effects of miR-145-5p in regulating myocardial ischemic injury. The I/R models were established in rat cardiomyocytes H9C2 and rats. Western blot analysis and quantitative polymerase chain reaction was performed to analyze protein expression. Annexin V-FITC/PI staining was conducted to evaluate cell apoptosis. The application of miR-145-5p mimics and inhibitor revealed that miR-145-5p promoted apoptosis in cardiomyocytes. Furthermore, we found that miR-145-5p directly inhibited dual specificity phosphatase 6 (DUSP6) by luciferase reporter assay. The results indicated that DUSP6 was beneficial against I/R injury through inhibiting c-Jun N-terminal kinase pathways. In conclusion, the essential roles of miR-145-5p and DUSP6 in I/R provide a novel therapeutic target to develop future intervention strategies.  相似文献   

20.

Aims

MicroRNAs (miRNAs) play important roles in several biological processes. In this study, we investigated the role of miR-1, an endothelin-1 (ET-1) targeting miRNA, in endothelial cells (ECs) and tissues of diabetic animals. ET-1 is known to be of pathogenetic significance in several chronic diabetic complications.

Main methods

PCR array was used to identify alterations of miRNA expression in ECs exposed to glucose. miR-1 expression was validated by TaqMan real-time PCR assay. Human retinal ECs (HRECs) and human umbilical vein ECs (HUVECs) exposed to various glucose levels with or without miR-1 mimic transfection, and tissues from streptozotocin-induced diabetic animals after two months of follow-up, were examined for miR-1 expression, as well as ET-1 and fibronectin (FN) mRNA and protein levels.

Key findings

Array analyses showed glucose-induced alterations of 125 miRNAs (out of 381) in ECs exposed to 25 mM glucose compared to 5 mM glucose. Fifty-one miRNAs were upregulated and 74 were downregulated. 25 mM glucose decreased miR-1 expression and increased ET-1 mRNA and protein levels. miR-1 mimic transfection prevented HG-induced ET-1 upregulation. Furthermore, glucose induced upregulation of FN, which is mediated partly by ET-1, was also prevented by such transfection.Diabetic animals showed decreased miR-1 expression in the retina, heart and kidneys. In parallel, ET-1 mRNA expressions were increased in these tissues of diabetic animals, in association with upregulation of FN.

Significance

These results indicate a novel glucose-induced mechanism of tissue damage, in which miR-1 regulates ET-1 expressions in diabetes. Identifying such mechanisms may lead to RNA based treatment for diabetic complications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号