首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In summer 2007, the Asian parasitoid Binodoxys communis (Hymenoptera: Braconidae) was released in North America for control of the exotic soybean aphid, Aphis glycines (Hemiptera: Aphididae). Despite its comparatively narrow host range, releases of B. communis may still constitute a risk to native aphid species. To estimate the risk of exposure of non-target aphids to B. communis, we merged assessments of temporal co-occurrence with projections of spatial overlap between B. communis and three native aphid species, and in-field measurements of the incidence of ecological filters that may protect these aphids from parasitism. Temporal co-occurrence was assessed between A. glycines and native aphids (Aphis asclepiadis, Aphis oestlundi, and Aphis monardae) at four different locations in Minnesota, USA. The degree of temporal overlap depended greatly on location and aphid species, ranging between 0 and 100%. All of the native aphids were tended by multiple species of ants, with overall ant-attendance ranging from 26.1 to 89.6%. During temporal overlap with A. glycines, 53 ± 11% of A. monardae colonies were partly found in flower heads of their host plant, with flowers acting as a physical refuge for this aphid. The extent of geographic overlap between B. communis and native aphids based upon Climex modeling was 17–28% for A. monardae, 13–22% for A. oestlundi, 46–55% for A. asclepiadis and 12–24% for the A. asclepiadis species complex. The estimated overall probability of potential exposure of B. communis on native aphids was relatively low (P = 0.115) for A. oestlundi and high (P = 0.550) for A. asclepiades. Physical and ant-mediated refuges considerably lowered probability of population-level impact on A. monardae, and could lead to substantial reduction of exposure for the other native aphids. These findings are used to make broader statements regarding the ecological safety of current B. communis releases and their potential impact on native aphid species in North America.  相似文献   

2.
A phylogeny of the genus Aphis Linnaeus, 1 758 was built primarily from specimens collected in the Midwest of the United States. A data matrix was constructed with 68 species and 41 morphological characters with respective character states of alate and apterous viviparous females. Dendrogram topologies of analyses performed using UPGMA (Unweighted Pair Group Method with Arithmetic Mean), Maximum Parsimony and Bayesian analysis of Cytochrome Oxidase I, Elongation Factor 1‐α and primary endosymbiont Buchnera aphidicola 16S sequences were not congruent. Bayesian analysis strongly supported most terminal nodes of the phylogenetic trees. The phylogeny was strongly supported by EF1‐α, and analysis of COI and EF1‐α molecular data combined with morphological characters. It was not supported by single analysis of COI or Buchnera aphidicola 16S. Results from the Bayesian phylogeny show 4 main species groups: asclepiadis, fabae, gossypii, and middletonii. Results place Aphis and species of the genera Protaphis Börner, 1952, Toxoptera Koch, 1856 and Xerobion Nevsky, 1928 in a monophyletic clade. Morphological characters support this monophyly as well. The phylogeny shows that the monophyletic clade of the North American middletonii species group belong to the genus Protaphis: P. debilicornis (Gillette & Palmer, 1929 ), comb. nov., P. echinaceae (Lagos and Voegtlin, 2009 ), comb. nov., and P. middletonii (Thomas, 1879 ). The genus Toxoptera should be considered a subgenus of Aphis (stat. nov.). The analysis also indicates that the current genus Iowana Frison, 1954 should be considered a subgenus of Aphis (stat. nov.).  相似文献   

3.
Gene expression of reproductive system of the black tiger shrimp (Peneaus monodon) has been widely studied to address poor maturation problem in captivity. However, a systematic evaluation of reference genes in quantitative real-time PCR (qPCR) for P. monodon reproductive organs is lacking. In this study, the stability of four potential reference genes (18s rRNA, GAPDH, β-actin, and EF1-α) was examined in the reproductive tissues in various conditions using bioinformatic tools: NormFinder and geNorm. For NormFinder, EF1-α and GAPDH ranked first and second as the most stable genes in testis groups whereas GAPDH and EF1-α were for ovaries from wild-caught broodstock and domesticated groups. EF1-α and β-actin ranked first and second for the eyestalk ablated ovaries. For geNorm, EF1-α and GAPDH had the best stability in all testis and ovaries from domesticated groups whereas EF1-α and β-actin were the best for ovaries from wild-caught and eyestalk ablated groups. Moreover, the expression levels of two well-known reproductive genes, Dmc1 and Vitellogenin, were used to validate these reference genes. When normalized to EF1-α, the expected expression patterns were obtained in all cases. Therefore, this work suggests that EF1-α is more versatile as reference genes in qPCR analysis for reproductive system in P. monodon.  相似文献   

4.
Binodoxys communis (Gahan) (Hymenoptera:Braconidae), a parasitoid of aphids originally from China, was introduced into Hawaii and evaluated in the laboratory for its ability to detect, accept, oviposit and develop in Aphis gossypii reared on two host plants, plus five other common aphid species. The parasitoid was able to detect all six aphid species and to successfully sting five species, with highest preference for those in the genus Aphis. Aphis species were highly suitable for parasitoid development. Other species were only marginally suitable. Parasitoids spent less time searching on plants of less acceptable aphids. Aphid defensive behaviors did not affect oviposition success, but did lengthen the parasitoid’s handling time of several aphid species. Host acceptance was positively correlated with host suitability, yet one unsuitable host was readily accepted for oviposition.  相似文献   

5.

Background

The species-rich genus Aphis consists of more than 500 species, many of them host-specific on a wide range of plants, yet very similar in general appearance due to convergence toward particular morphological types. Most species have been historically clustered into four main phenotypic groups (gossypii, craccivora, fabae, and spiraecola groups). To confirm the morphological hypotheses between these groups and to examine the characteristics that determine them, multivariate morphometric analyses were performed using 28 characters measured/counted from 40 species. To infer whether the morphological relationships are correlated with the genetic relationships, we compared the morphometric dataset with a phylogeny reconstructed from the combined dataset of three mtDNA and one nuclear DNA regions.

Principal Findings

Based on a comparison of morphological and molecular datasets, we confirmed morphological reduction or regression in the gossypii group unlike in related groups. Most morphological characteristics of the gossypii group were less variable than for the other groups. Due to these, the gossypii group could be morphologically well separated from the craccivora, fabae, and spiraecola groups. In addition, the correlation of the rates of evolution between morphological and DNA datasets was highly significant in their diversification.

Conclusions

The morphological separation between the gossypii group and the other species-groups are congruent with their phylogenetic relationships. Analysis of trait evolution revealed that the morphological traits found to be significant based on the morphometric analyses were confidently correlated with the phylogeny. The dominant patterns of trait evolution resulting in increased rates of short branches and temporally later evolution are likely suitable for the modality of Aphis speciation because they have adapted species-specifically, rapidly, and more recently on many different host plants.  相似文献   

6.
The phylogenetic position of Saccharomycodes sinensis has been debated by yeast taxonomists. In this study, a multigene phylogenetic analysis based on four regions, namely the 18S ribosomal DNA (rDNA), the D1/D2 domains of the 26S rDNA, the second largest subunit of RNA polymerase II gene (RPB2) and translation elongation factor 1-α gene (EF1-α), were performed to address the phylogenetic placement of S. sinensis. Our result indicated that S. sinensis belongs to Saccharomycetaceae instead of Saccharomycodaceae, and forms a single species lineage divergent from the other genera within Saccharomycetaceae. Yueomyces gen. nov. (MycoBank No. MB 811648) is proposed in the Saccharomycetaceae with Y. sinensis comb. nov. (MycoBank No. MB 811649, type strain CGMCC 2.01395T = IFO 10111T = CBS 7075T) as the type species.  相似文献   

7.
8.
Neonicotinoid insecticides act on nicotinic acetylcholine receptor and are particularly effective against sucking pests. They are widely used in crops protection to fight against aphids, which cause severe damage. In the present study we evaluated the susceptibility of the pea aphid Acyrthosiphon pisum to the commonly used neonicotinoid insecticides imidacloprid (IMI), thiamethoxam (TMX) and clothianidin (CLT). Binding studies on aphid membrane preparations revealed the existence of high and low-affinity binding sites for [3H]-IMI (Kd of 0.16±0.04 nM and 41.7±5.9 nM) and for the nicotinic antagonist [125I]-α-bungarotoxin (Kd of 0.008±0.002 nM and 1.135±0.213 nM). Competitive binding experiments demonstrated that TMX displayed a higher affinity than IMI for [125I]-α-bungarotoxin binding sites while CLT affinity was similar for both [125I]-α-bungarotoxin and [3H]-IMI binding sites. Interestingly, toxicological studies revealed that at 48 h, IMI (LC50 = 0.038 µg/ml) and TMX (LC50 = 0.034 µg/ml) were more toxic than CLT (LC50 = 0.118 µg/ml). The effect of TMX could be associated to its metabolite CLT as demonstrated by HPLC/MS analysis. In addition, we found that aphid larvae treated either with IMI, TMX or CLT showed a strong variation of nAChR subunit expression. Using semi-quantitative PCR experiments, we detected for all insecticides an increase of Apisumα10 and Apisumβ1 expressions levels, whereas Apisumβ2 expression decreased. Moreover, some other receptor subunits seemed to be differently regulated according to the insecticide used. Finally, we also demonstrated that nAChR subunit expression differed during pea aphid development. Altogether these results highlight species specificity that should be taken into account in pest management strategies.  相似文献   

9.
Selected monoterpenes inhibited methane oxidation by methanotrophs (Methylosinus trichosporium OB3b, Methylobacter luteus), denitrification by environmental isolates, and aerobic metabolism by several heterotrophic pure cultures. Inhibition occurred to various extents and was transient. Complete inhibition of methane oxidation by Methylosinus trichosporium OB3b with 1.1 mM (−)-α-pinene lasted for more than 2 days with a culture of optical density of 0.05 before activity resumed. Inhibition was greater under conditions under which particulate methane monooxygenase was expressed. No apparent consumption or conversion of monoterpenes by methanotrophs was detected by gas chromatography, and the reason that transient inhibition occurs is not clear. Aerobic metabolism by several heterotrophs was much less sensitive than methanotrophy was; Escherichia coli (optical density, 0.01), for example, was not affected by up to 7.3 mM (−)-α-pinene. The degree of inhibition was monoterpene and species dependent. Denitrification by isolates from a polluted sediment was not inhibited by 3.7 mM (−)-α-pinene, γ-terpinene, or β-myrcene, whereas 50 to 100% inhibition was observed for isolates from a temperate swamp soil. The inhibitory effect of monoterpenes on methane oxidation was greatest with unsaturated, cyclic hydrocarbon forms [e.g., (−)-α-pinene, (S)-(−)-limonene, (R)-(+)-limonene, and γ-terpinene]. Lower levels of inhibition occurred with oxide and alcohol derivatives [(R)-(+)-limonene oxide, α-pinene oxide, linalool, α-terpineol] and a noncyclic hydrocarbon (β-myrcene). Isomers of pinene inhibited activity to different extents. Given their natural sources, monoterpenes may be significant factors affecting bacterial activities in nature.  相似文献   

10.
11.
Cell protection against different noxious stimuli like oxidative stress or chemical toxins plays a central role in the treatment of many diseases. The inducible heme oxygenase isoform, heme oxygenase-1 (HO-1), is known to protect cells against a variety of harmful conditions including apoptosis. Because a number of medium strong electrophiles from a series of α-X-substituted 2’,3,4,4’-tetramethoxychalcones (α-X-TMCs, X = H, F, Cl, Br, I, CN, Me, p-NO2-C6H4, Ph, p-OMe-C6H4, NO2, CF3, COOEt, COOH) had proven to activate Nrf2 resulting in HO-1 induction and inhibit NF-κB downstream target genes, their protective effect against staurosporine induced apoptosis and reactive oxygen species (ROS) production was investigated. RAW264.7 macrophages treated with 19 different chalcones (15 α-X-TMCs, chalcone, 2’-hydroxychalcone, calythropsin and 2’-hydroxy-3,4,4’-trimethoxychalcone) prior to staurosporine treatment were analyzed for apoptosis and ROS production, as well as HO-1 protein expression and enzyme activity. Additionally, Nrf2 and NF-κB activity was assessed. We found that amongst all tested chalcones only E-α-(4-methoxyphenyl)-2’,3,4,4''-tetramethoxychalcone (E-α-p-OMe-C6H4-TMC) demonstrated a distinct, statistically significant antiapoptotic effect in a dose dependent manner, showing no toxic effects, while its double bond isomer Z-α-p-OMe-C6H4-TMC displayed no significant activity. Also, E-α-p-OMe-C6H4-TMC induced HO-1 protein expression and increased HO-1 activity, whilst inhibition of HO-1 by SnPP-IX abolished its antiapoptotic effect. The only weakly electrophilic chalcone E-α-p-OMe-C6H4-TMC reduced the staurosporine triggered formation of ROS, while inducing the translocation of Nrf2 into the nucleus. Furthermore, staurosporine induced NF-κB activity was attenuated following E-α-p-OMe-C6H4-TMC treatment. Overall, E-α-p-OMe-C6H4-TMC demonstrated its effective cytoprotective potential via a non-toxic induction of HO-1 in RAW264.7 macrophages. The observed cytoprotective effect may partly be related to both, the activation of the Nrf2- and inhibition of the NF-κB pathway.  相似文献   

12.
The HO gene in Saccharomyces cerevisiae is regulated by a large and complex promoter that is similar to promoters in higher order eukaryotes. Within this promoter are 10 potential binding sites for the a1-α2 heterodimer, which represses HO and other haploid-specific genes in diploid yeast cells. We have determined that a1-α2 binds to these sites with differing affinity, and that while certain strong-affinity sites are crucial for repression of HO, some of the weak-affinity sites are dispensable. However, these weak-affinity a1-α2-binding sites are strongly conserved in related yeast species and have a role in maintaining repression upon the loss of strong-affinity sites. We found that these weak sites are sufficient for a1-α2 to partially repress HO and recruit the Tup1-Cyc8 (Tup1-Ssn6) co-repressor complex to the HO promoter. We demonstrate that the Swi5 activator protein is not bound to URS1 in diploid cells, suggesting that recruitment of the Tup1-Cyc8 complex by a1-α2 prevents DNA binding by activator proteins resulting in repression of HO.  相似文献   

13.
N2,3-Ethenoguanine (N2,3-ϵG) is one of the exocyclic DNA adducts produced by endogenous processes (e.g. lipid peroxidation) and exposure to bioactivated vinyl monomers such as vinyl chloride, which is a known human carcinogen. Existing studies exploring the miscoding potential of this lesion are quite indirect because of the lability of the glycosidic bond. We utilized a 2′-fluoro isostere approach to stabilize this lesion and synthesized oligonucleotides containing 2′-fluoro-N2,3-ϵ-2′-deoxyarabinoguanosine to investigate the miscoding potential of N2,3-ϵG by Y-family human DNA polymerases (pols). In primer extension assays, pol η and pol κ replicated through N2,3-ϵG, whereas pol ι and REV1 yielded only 1-base incorporation. Steady-state kinetics revealed that dCTP incorporation is preferred opposite N2,3-ϵG with relative efficiencies in the order of pol κ > REV1 > pol η ≈ pol ι, and dTTP misincorporation is the major miscoding event by all four Y-family human DNA pols. Pol ι had the highest dTTP misincorporation frequency (0.71) followed by pol η (0.63). REV1 misincorporated dTTP and dGTP with much lower frequencies. Crystal structures of pol ι with N2,3-ϵG paired to dCTP and dTTP revealed Hoogsteen-like base pairing mechanisms. Two hydrogen bonds were observed in the N2,3-ϵG:dCTP base pair, whereas only one appears to be present in the case of the N2,3-ϵG:dTTP pair. Base pairing mechanisms derived from the crystal structures explain the slightly favored dCTP insertion for pol ι in steady-state kinetic analysis. Taken together, these results provide a basis for the mutagenic potential of N2,3-ϵG.  相似文献   

14.
The 1,N6-(2-Hydroxy-3-hydroxymethylpropan-1,3-diyl)-2′-deoxyadenosine (1,N6-γ-HMHP-dA) adducts are formed upon bifunctional alkylation of adenine nucleobases in DNA by 1,2,3,4-diepoxybutane, the putative ultimate carcinogenic metabolite of 1,3-butadiene. The presence of a substituted 1,N6-propano group on 1,N6-γ-HMHP-dA is expected to block the Watson-Crick base pairing of the adducted adenine with thymine, potentially contributing to mutagenesis. In this study, the enzymology of replication past site-specific 1,N6-γ-HMHP-dA lesions in the presence of human DNA polymerases (hpols) β, η, κ, and ι and archebacterial polymerase Dpo4 was investigated. Run-on gel analysis with all four dNTPs revealed that hpol η, κ, and Dpo4 were able to copy the modified template. In contrast, hpol ι inserted a single base opposite 1,N6-γ-HMHP-dA but was unable to extend beyond the damaged site, and a complete replication block was observed with hpol β. Single nucleotide incorporation experiments indicated that although hpol η, κ, and Dpo4 incorporated the correct nucleotide (dTMP) opposite the lesion, dGMP and dAMP were inserted with a comparable frequency. HPLC-ESI-MS/MS analysis of primer extension products confirmed the ability of bypass polymerases to insert dTMP, dAMP, or dGMP opposite 1,N6-γ-HMHP-dA and detected large amounts of −1 and −2 deletion products. Taken together, these results indicate that hpol η and κ enzymes bypass 1,N6-γ-HMHP-dA lesions in an error-prone fashion, potentially contributing to A→T and A→C transversions and frameshift mutations observed in cells following treatment with 1,2,3,4-diepoxybutane.  相似文献   

15.
16.
Most of the Shewanella species contain two periplasmic nitrate reductases (NAP-α and NAP-β), which is a unique feature of this genus. In the present study, the physiological function and evolutionary relationship of the two NAP systems were studied in the deep-sea bacterium Shewanella piezotolerans WP3. Both of the WP3 nap gene clusters: nap(napD1A1B1C) and nap(napD2A2B2) were shown to be involved in nitrate respiration. Phylogenetic analyses suggest that NAP-β originated earlier than NAP-α. Tetraheme cytochromes NapC and CymA were found to be the major electron deliver proteins, and CymA also served as a sole electron transporter towards nitrite reductase. Interestingly, a ΔnapA2 mutant with the single functional NAP-α system showed better growth than the wild-type strain, when grown in nitrate medium, and it had a selective advantage to the wild-type strain. On the basis of these results, we proposed the evolution direction of nitrate respiration system in Shewanella: from a single NAP-β to NAP-β and NAP-α both, followed by the evolution to a single NAP-α. Moreover, the data presented here will be very useful for the designed engineering of Shewanella for more efficient respiring capabilities for environmental bioremediation.  相似文献   

17.
Etheno DNA adducts are a prevalent type of DNA damage caused by vinyl chloride (VC) exposure and oxidative stress. Etheno adducts are mutagenic and may contribute to the initiation of several pathologies; thus, elucidating the pathways by which they induce cellular transformation is critical. Although N2,3-ethenoguanine (N2,3-εG) is the most abundant etheno adduct, its biological consequences have not been well characterized in cells due to its labile glycosidic bond. Here, a stabilized 2′-fluoro-2′-deoxyribose analog of N2,3-εG was used to quantify directly its genotoxicity and mutagenicity. A multiplex method involving next-generation sequencing enabled a large-scale in vivo analysis, in which both N2,3-εG and its isomer 1,N2-ethenoguanine (1,N2-εG) were evaluated in various repair and replication backgrounds. We found that N2,3-εG potently induces G to A transitions, the same mutation previously observed in VC-associated tumors. By contrast, 1,N2-εG induces various substitutions and frameshifts. We also found that N2,3-εG is the only etheno lesion that cannot be repaired by AlkB, which partially explains its persistence. Both εG lesions are strong replication blocks and DinB, a translesion polymerase, facilitates the mutagenic bypass of both lesions. Collectively, our results indicate that N2,3-εG is a biologically important lesion and may have a functional role in VC-induced or inflammation-driven carcinogenesis.  相似文献   

18.
Whole-cell suspensions of Cylindrocarpon didymum were observed to transform 2,2′-bimorphine to the compounds 10-α-S-monohydroxy-2,2′-bimorphine and 10,10′-α,α′-S,S′-dihydroxy-2,2′-bimorphine. Mass spectrometry and 1H nuclear magnetic resonance spectroscopy confirmed the identities of these new morphine alkaloids.  相似文献   

19.
Stuttering is a common, highly heritable neurodevelopmental disorder characterized by deficits in the volitional control of speech. Whole-exome sequencing identified two heterozygous AP4E1 coding variants, c.1549G>A (p.Val517Ile) and c.2401G>A (p.Glu801Lys), that co-segregate with persistent developmental stuttering in a large Cameroonian family, and we observed the same two variants in unrelated Cameroonians with persistent stuttering. We found 23 other rare variants, including predicted loss-of-function variants, in AP4E1 in unrelated stuttering individuals in Cameroon, Pakistan, and North America. The rate of rare variants in AP4E1 was significantly higher in unrelated Pakistani and Cameroonian stuttering individuals than in population-matched control individuals, and coding variants in this gene are exceptionally rare in the general sub-Saharan West African, South Asian, and North American populations. Clinical examination of the Cameroonian family members failed to identify any symptoms previously reported in rare individuals carrying homozygous loss-of-function mutations in this gene. AP4E1 encodes the ε subunit of the heterotetrameric (ε-β4-μ4-σ4) AP-4 complex, involved in protein sorting at the trans-Golgi network. We found that the μ4 subunit of AP-4 interacts with NAGPA, an enzyme involved in the synthesis of the mannose 6-phosphate signal that targets acid hydrolases to the lysosome and the product of a gene previously associated with stuttering. These findings implicate deficits in intracellular trafficking in persistent stuttering.  相似文献   

20.
Histone deacetylase 3 (HDAC3) plays a critical role in the maintenance of endothelial integrity and other physiological processes. In this study, we demonstrated that HDAC3 undergoes unconventional splicing during stem cell differentiation. Four different splicing variants have been identified, designated as HD3α, -β, -γ, and -δ, respectively. HD3α was confirmed in stem cell differentiation by specific antibody against the sequences from intron 12. Immunofluorescence staining indicated that the HD3α isoform co-localized with CD31-positive or α-smooth muscle actin-positive cells at different developmental stages of mouse embryos. Overexpression of HD3α reprogrammed human aortic endothelial cells into mesenchymal cells featuring an endothelial-to-mesenchymal transition (EndMT) phenotype. HD3α directly interacts with HDAC3 and Akt1 and selectively activates transforming growth factor β2 (TGFβ2) secretion and cleavage. TGFβ2 functioned as an autocrine and/or paracrine EndMT factor. The HD3α-induced EndMT was both PI3K/Akt- and TGFβ2-dependent. This study provides the first evidence of the role of HDAC3 splicing in the maintenance of endothelial integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号