首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Alternative splicing (AS) of precursor mRNA (pre-mRNA) is an important gene regulation process that potentially regulates many physiological processes in plants, including the response to abiotic stresses such as salt stress.

Results

To analyze global changes in AS under salt stress, we obtained high-coverage (~200 times) RNA sequencing data from Arabidopsis thaliana seedlings that were treated with different concentrations of NaCl. We detected that ~49% of all intron-containing genes were alternatively spliced under salt stress, 10% of which experienced significant differential alternative splicing (DAS). Furthermore, AS increased significantly under salt stress compared with under unstressed conditions. We demonstrated that most DAS genes were not differentially regulated by salt stress, suggesting that AS may represent an independent layer of gene regulation in response to stress. Our analysis of functional categories suggested that DAS genes were associated with specific functional pathways, such as the pathways for the responses to stresses and RNA splicing. We revealed that serine/arginine-rich (SR) splicing factors were frequently and specifically regulated in AS under salt stresses, suggesting a complex loop in AS regulation for stress adaptation. We also showed that alternative splicing site selection (SS) occurred most frequently at 4 nucleotides upstream or downstream of the dominant sites and that exon skipping tended to link with alternative SS.

Conclusions

Our study provided a comprehensive view of AS under salt stress and revealed novel insights into the potential roles of AS in plant response to salt stress.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-431) contains supplementary material, which is available to authorized users.  相似文献   

3.
4.
5.
6.
Signal-dependent alternative splicing is important for regulating gene expression in eukaryotes, yet our understanding of how signals impact splicing mechanisms is limited. A model to address this issue is alternative splicing of Drosophila TAF1 pre-mRNA in response to camptothecin (CPT)-induced DNA damage signals. CPT treatment of Drosophila S2 cells causes increased inclusion of TAF1 alternative cassette exons 12a and 13a through an ATR signaling pathway. To evaluate the role of TAF1 pre-mRNA sequences in the alternative splicing mechanism, we developed a TAF1 minigene (miniTAF1) and an S2 cell splicing assay that recapitulated key aspects of CPT-induced alternative splicing of endogenous TAF1. Analysis of miniTAF1 indicated that splice site strength underlies independent and distinct mechanisms that control exon 12a and 13a inclusion. Mutation of the exon 13a weak 5' splice site or weak 3' splice site to a consensus sequence was sufficient for constitutive exon 13a inclusion. In contrast, mutation of the exon 12a strong 5' splice site or moderate 3' splice site to a consensus sequence was only sufficient for constitutive exon 12a inclusion in the presence of CPT-induced signals. Analogous studies of the exon 13 3' splice site suggest that exon 12a inclusion involves signal-dependent pairing between constitutive and alternative splice sites. Finally, intronic elements identified by evolutionary conservation were necessary for full repression of exon 12a inclusion or full activation of exon 13a inclusion and may be targets of CPT-induced signals. In summary, this work defines the role of sequence elements in the regulation of TAF1 alternative splicing in response to a DNA damage signal.  相似文献   

7.
8.
The human CD44 gene encodes multiple isoforms of a transmembrane protein that differ in their extracellular domains as a result of alternative splicing of its variable exons. Expression of CD44 is tightly regulated according to the type and physiological status of a cell, with expression of high molecular weight isoforms by inclusion of variable exons and low molecular weight isoforms containing few or no variable exons. Human CD44 variable exon 3 (v3) can follow a specific alternative splicing route different from that affecting other variable exons. Here we map and functionally describe the splicing enhancer element within CD44 exon v3 which regulates its inclusion in the final mRNA. The v3 splicing enhancer is a multisite bipartite element consisting of a tandem nonamer, the XX motif, and an heptamer, the Y motif, located centrally in the exon. Each of the three sites of this multisite enhancer partially retains its splicing enhancing capacity independently from each other in CD44 and shows full enhancing function in gene contexts different from CD44. We further demonstrate that these motifs act cooperatively as at least two motifs are needed to maintain exon inclusion. Their action is differential with respect to the splice-site target abutting v3. The first X motif acts on the 3' splice site, the second X motif acts on both splice sites (as a bidirectional exonic splicing enhancer), and the Y motif acts on the 5' splice site. We also show that the multisite v3 splicing enhancer is functional irrespective of flanking intron length and spatial organization within v3.  相似文献   

9.
Many basic cellular processes are shared across vast phylogenetic distances, whereas sex-determining mechanisms are highly variable between phyla although the existence of two sexes is nearly universal in the animal kingdom. The only molecular similarity in sex determination found so far between phyla is among the fly doublesex, worm mab-3, and vertebrate Dmrt1/DMY, which contain a zinc-finger-like DNA-binding motif, DM domain. Here we report that three isoforms of the zebrafish Dmrt1 were generated in gonads by multiple alternative splicing, which encoded predicted proteins with 267, 246, and 132 amino acids, respectively. By cDNA cloning and genomic structure analysis, we found that there were seven exons of Dmrt1, which were alternatively spliced to generate the Dmrt1 isoforms. Northern blotting analysis revealed that expression of zebrafish Dmrt1 was higher in testis than ovary. Real time fluorescent quantitative RT-PCR indicated that expression of isoform a of Dmrt1 was dominantly higher than those of Dmrt1 b and c. Furthermore, in situ hybridization to gonads sections showed that Dmrt1 was expressed in developing germ cells of both testis and ovary, suggesting that the Dmrt1 gene is not only associated with testis development, but also, may be important in ovary differentiation of zebrafish.  相似文献   

10.
Chitinases are often considered pathogenesis-related proteins since their activity can be induced by viral infections, fungal and bacterial cell wall components, and also by more general sources of stress such as wounding, salicylic acid, ethylene, auxins and cytokinins. In the present study, comparative proteomic analysis showed the defense-related acidic chitinase II to be specifically induced in Citrus clementina leaves infested by the two-spotted spider mite Tetranychus urticae or treated with MeJA. In parallel, changes in the mRNA profiles of two partially homologous chitinase forms were shown by RT-PCR. In particular, the appearance of an additional cDNA chitinase fragment in T. urticae-infested and MeJA-treated leaves was observed. This finding may indicate a specific regulatory mechanism of chitinase expression. We report evidence for alternative splicing in T. urticae-infested C. clementina, where a premature stop codon after the first 135 amino acids was introduced. We observed inducible chitinase activity after MeJA treatment, indicative of a rapid plant response to infestation. This work provides the first evidence of chitinase alternative splicing in C. clementina. In addition, the presence of the dual-band pattern for chitinase cDNA by RT-PCR may represent a suitable predictive marker for early diagnosis of plant biotic stress.  相似文献   

11.
12.
Su Z  Gu X 《Gene》2012,504(1):102-106
Gene duplications and alternative splicing (AS) isoforms are two widespread types of genetic variations that can facilitate diversification of protein function. A number of studies claimed that after gene duplication, two AS isoforms with differential functions can be 'fixed', respectively, in each of the duplicate copies. This simple 'functional-sharing' hypothesis was recently challenged by Roux and Robinson-Rechavi (2011). Instead, they proposed a more sophisticated hypothesis, invoking that less alternative splicing genes tend to be duplicated more frequently, and single-copy genes are younger than duplicate genes, or the 'duplicability-age' hypothesis for short. In this letter, we show that all these genome-wide analyses of AS isoforms actually did not provide clear-cut evidence to nullify the basic idea of functional-sharing hypothesis. After updating our understanding of genome-wide alternative splicing, duplicability and CNV (copy number variation), we argue that the foundation of the duplicability-age hypothesis remains to be justified carefully. Finally, we suggest that a better approach to resolving this controversy is the correspondence analysis of indels (insertions and deletions) between duplicate genes to the genomic exon-intron structure, which can be used to experimentally test the effect of functional-sharing hypothesis.  相似文献   

13.
14.
Two hundred and thirty-two bacterial strains were isolated from the rhizospheric soil of Populus euphratica which is the dominant tree living in extreme arid regions in northwest China. Some strains with plant growth-promoting bacteria related metabolic characteristics were able to promote drought resistance in plants after inoculation. Ten strains with the greatest effects increased the dry weight of wheat shoots from 0.5 to 34.4 %, and the surface area of the root systems from 12.56 to 212.17 % compared to the control after drought treatment whereas no obvious promoting effect was observed in normal water conditions. These 10 strains were identified to be of the genera Pseudomonas, Bacillus, Stenotrophomonas and Serratia by 16S rRNA (rrs) gene sequence alignment. Among these strains, Serratia sp. 1-9 and Pseudomonas sp. 5-23 were the two most effective strains. Both of them produced auxin and the production increased significantly when cultured under simulated drought conditions which are inferred to be the most plausible mechanism for their plant growth-promoting effect under drought stress.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-014-0479-3) contains supplementary material, which is available to authorized users.  相似文献   

15.
16.
17.
RNA sequence elements involved in the regulation of pre-mRNA splicing have previously been identified in vertebrate genomes by computational methods. Here, we apply such approaches to predict splicing regulatory elements in Drosophila melanogaster and compare them with elements previously found in the human, mouse, and pufferfish genomes. We identified 99 putative exonic splicing enhancers (ESEs) and 231 putative intronic splicing enhancers (ISEs) enriched near weak 5' and 3' splice sites of constitutively spliced introns, distinguishing between those found near short and long introns. We found that a significant proportion (58%) of fly enhancer sequences were previously reported in at least one of the vertebrates. Furthermore, 20% of putative fly ESEs were previously identified as ESEs in human, mouse, and pufferfish; while only two fly ISEs, CTCTCT and TTATAA, were identified as ISEs in all three vertebrate species. Several putative enhancer sequences are similar to characterized binding-site motifs for Drosophila and mammalian splicing regulators. To provide additional evidence for the function of putative ISEs, we separately identified 298 intronic hexamers significantly enriched within sequences phylogenetically conserved among 15 insect species. We found that 73 putative ISEs were among those enriched in conserved regions of the D. melanogaster genome. The functions of nine enhancer sequences were verified in a heterologous splicing reporter, demonstrating that these sequences are sufficient to enhance splicing in vivo. Taken together, these data identify a set of predicted positive-acting splicing regulatory motifs in the Drosophila genome and reveal regulatory sequences that are present in distant metazoan genomes.  相似文献   

18.
Myelin-associated glycoprotein (MAG) is a major component of myelin in the vertebrate central nervous system. MAG is present in the periaxonal region of the myelin structure, where it interacts with neuronal proteins to inhibit axon outgrowth and protect neurons from degeneration. Two alternatively spliced isoforms of Mag mRNA have been identified. The mRNA encoding the shorter isoform, known as S-MAG, contains a termination codon in exon 12, while the mRNA encoding the longer isoform, known as L-MAG, skips exon 12 and produces a protein with a longer C-terminal region. L-MAG is required in the central nervous system. How inclusion of Mag exon 12 is regulated is not clear. In a previous study, we showed that heteronuclear ribonucleoprotein A1 (hnRNP A1) contributes to Mag exon 12 skipping. Here, we show that hnRNP A1 interacts with an element that overlaps the 5′ splice site of Mag exon 12. The element has a reduced ability to interact with the U1 snRNP compared with a mutant that improves the splice site consensus. An evolutionarily conserved secondary structure is present surrounding the element. The structure modulates interaction with both hnRNP A1 and U1. Analysis of splice isoforms produced from a series of reporter constructs demonstrates that the hnRNP A1-binding site and the secondary structure both contribute to exclusion of Mag exon 12.  相似文献   

19.
Cylindrocladium quinqueseptatum has been considered as the most destructive pathogen of Eucalyptus nurseries and plantations in north India. Genetic resistance has not been determined against this disease in Eucalyptus and genetic diversity among the fungal population in northern India is not known. Seventy three isolates from infected leaves and twigs of Eucalyptus were collected from different northern Indian state and analyzed through RAPD-PCR for screening genetic diversity. The UPGMA cluster analysis score of 284 loci permitted identification of 11 population lines and an outlier. This molecular variability prevalent among the north Indian population of the pathogen can used in identifying Cylindrocladium leaf and seedling blight resistant Eucalyptus germplasm.  相似文献   

20.

Background

Essential oils extracted from aromatic and medicinal plants have many biological properties and are therefore an alternative to the use of synthetic products. The chemical composition of essential oils from two medicinal plants (Eucalyptus globulus and E. lehmannii) was determined and, their insecticidal effects on the third and fourth larval stages of Orgyia trigotephras were assessed.

Results

Larvae were collected from Jebel Abderrahmane (North-East of Tunisia), conserved in groups of 50/box (21 × 10 × 10 cm) at a temperature of 25°C. Larvae were tested for larvicidal activities of essential oils. Each oil was diluted in ethanol (96%) to prepare 3 test solutions (S1 = 0.05%, S2 = 0.10% and S3 = 0.50%). Essential oils were used for contact, ingestion and Olfactory actions and compared to reference products (Bacillus thuringiensis and Decis). Olfactory action of essential oils shows that larvae mortality is higher than contact action, lower than ingestion action. MTM and FTM of S3 of E. lehmannii were respectively 1 h 32 min and 1 h 39 min are higher than those of E. globulus (MTM = 51 min and FTM = 1 h 22 min 34 sec). Contact action of E. lehmannii oil shows low insecticidal activity compared to E. globulus. MTM are respectively (1 min 52 sec and 1 min 7 sec), FTM are (2 min 38 sec, 1 min 39 sec), are the shortest recorded for S3, on the third stage of larvae. The fourth stage of larvae, MTM are (2 min 20 sec and 2 min 9 sec), FTM are (3 min 25 sec, 3 min 19 sec). Ingestion action of essential oils is longer than the contact action, since the time of death exceeds 60 minutes for all species.

Conclusion

Results shows that essential oils have a toxic action on nerves leading to a disruption of vital system of insects. High toxic properties make these plant-derived compounds suitable for incorporation in integrated pest management programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号