首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Aims

The antidiabetic drug metformin is currently used prior and during pregnancy for polycystic ovary syndrome, as well as during gestational diabetes mellitus. We investigated the effects of prenatal metformin exposure on the metabolic phenotype of the offspring during adulthood in mice.

Methods

Metformin (300 mg/kg) or vehicle was administered orally to dams on regular diet from the embryonic day E0.5 to E17.5. Gene expression profiles in liver and brain were analysed from 4-day old offspring by microarray. Body weight development and several metabolic parameters of offspring were monitored both during regular diet (RD-phase) and high fat diet (HFD-phase). At the end of the study, two doses of metformin or vehicle were given acutely to mice at the age of 20 weeks, and Insig-1 and GLUT4 mRNA expressions in liver and fat tissue were analysed using qRT-PCR.

Results

Metformin exposed fetuses were lighter at E18.5. There was no effect of metformin on the maternal body weight development or food intake. Metformin exposed offspring gained more body weight and mesenteric fat during the HFD-phase. The male offspring also had impaired glucose tolerance and elevated fasting glucose during the HFD-phase. Moreover, the expression of GLUT4 mRNA was down-regulated in epididymal fat in male offspring prenatally exposed to metformin. Based on the microarray and subsequent qRT-PCR analyses, the expression of Insig-1 was changed in the liver of neonatal mice exposed to metformin prenatally. Furthermore, metformin up-regulated the expression of Insig-1 later in development. Gene set enrichment analysis based on preliminary microarray data identified several differentially enriched pathways both in control and metformin exposed mice.

Conclusions

The present study shows that prenatal metformin exposure causes long-term programming effects on the metabolic phenotype during high fat diet in mice. This should be taken into consideration when using metformin as a therapeutic agent during pregnancy.  相似文献   

2.
3.
4.
5.
Exposure to synthetic glucocorticoids during development can result in later cardiovascular and renal disease in sheep and rats. Although prenatal glucocorticoid exposure is associated with impaired renal development, less is known about effects on the developing heart. This study aimed to examine the effects of a short-term exposure to dexamethasone (60 hours from embryonic day 12.5) on the developing mouse heart, and cardiovascular function in adult male offspring. Dexamethasone (DEX) exposed fetuses were growth restricted compared to saline treated controls (SAL) at E14.5, but there was no difference between groups at E17.5. Heart weights of the DEX fetuses also tended to be smaller at E14.5, but not different at E17.5. Cardiac AT1aR, Bax, and IGF-1 mRNA expression was significantly increased by DEX compared to SAL at E17.5. In 12-month-old offspring DEX exposure caused an increase in basal blood pressure of ∼3 mmHg. In addition, DEX exposed mice had a widened pulse pressure compared to SAL. DEX exposed males at 12 months had an approximate 25% reduction in nephron number compared to SAL, but no difference in cardiomyocyte number. Exposure to DEX in utero appears to adversely impact on nephrogenesis and heart growth but is not associated with a cardiomyocyte deficit in male mice in adulthood, possibly due to compensatory growth of the myocardium following the initial insult. However, the widened pulse pressure may be indicative of altered vascular compliance.  相似文献   

6.
Early changes in neuroendocrine pathways are essential in the development of metabolic pathologies. Thus, it is important to have a better understanding of the signals involved in their initiation. Long-term consumption of high-fat diets induces insulin resistance, obesity, diabetes. Here, we have investigated early neural and endocrine events in the hypothalamus and hippocampus induced by a short-term high fat, low carbohydrate diet in adult male Wistar rats. The release of serotonin, which is closely associated with the actions of insulin and leptin, was measured, by electrochemical detection following reverse-phase liquid chromatography (HPLC), in the extracellular space of the medial hypothalamus and the dorsal hippocampus in samples obtained from non-anesthetized animals, by microdialysis. The high-fat diet had a specific effect on the hypothalamus. Serotonin release induced by food intake was reduced after 1 week, and effectively ceased after 6 weeks of the diet. After 1 week, there was an increased gene expression of the insulin receptor and the insulin receptor substrates IRS1 and IRS2, as measured by real-time PCR. After 6 weeks of diet, insulin gene expression increased. Leptinemia increased in all cases. This new data support the concept that high-fat diets, in addition to have peripheral effects, cause a rapid alteration in specific central mechanisms involved in energy and glucose homeostasis. The changes in the gene expression of insulin and signaling elements represent possible adaptations aimed at counterbalancing the reduced responsiveness of the serotonergic system to nutritional signals and maintaining homeostasis. Sophie M. Banas and Claude Rouch have contributed equally to this work.  相似文献   

7.

Aims/hypothesis

Diabetic voiding dysfunction has been reported in epidemiological dimension of individuals with diabetes mellitus. Animal models might provide new insights into the molecular mechanisms of this dysfunction to facilitate early diagnosis and to identify new drug targets for therapeutic interventions.

Methods

Thirty male Sprague-Dawley rats received either chow or high-fat diet for eleven weeks. Proteomic alterations were comparatively monitored in both groups to discover a molecular fingerprinting of the urinary bladder remodelling/dysfunction. Results were validated by ELISA, Western blotting and immunohistology.

Results

In the proteome analysis 383 proteins were identified and canonical pathway analysis revealed a significant up-regulation of acute phase reaction, hypoxia, glycolysis, β-oxidation, and proteins related to mitochondrial dysfunction in high-fat diet rats. In contrast, calcium signalling, cytoskeletal proteins, calpain, 14-3-3η and eNOS signalling were down-regulated in this group. Interestingly, we found increased ubiquitin proteasome activity in the high-fat diet group that might explain the significant down-regulation of eNOS, 14-3-3η and calpain.

Conclusions/interpretation

Thus, high-fat diet is sufficient to induce significant remodelling of the urinary bladder and alterations of the molecular fingerprint. Our findings give new insights into obesity related bladder dysfunction and identified proteins that may indicate novel pathophysiological mechanisms and therefore constitute new drug targets.  相似文献   

8.
Overconsumption of palatable energy-dense foods has negative health implications and it is associated with obesity and several eating disorders. Currently, little is known about the neuronal circuitries activated by the acute ingestion of a rewarding stimulus. Here, we used a combination of immunohistochemistry, pharmacology and neuronal tracing analyses to examine the role of the mesolimbic system in general, and the orexin neurons in particular, in a simple experimental test in which naïve mice are allowed to spontaneously eat a pellet of a high fat diet (HFD) for 2 h. We found that acute HFD activates c-Fos expression in several reward-related brain areas, including the ventral tegmental area (VTA), nucleus accumbens, central amygdala and lateral hypothalamic area. We also found that: i- HFD-mediated orosensory stimulation was required for the mesolimbic pathway activation, ii- acute HFD differentially activates dopamine neurons of the paranigral, parabrachial pigmented and interfascicular sub-regions of the VTA, and iii- orexin neurons of the lateral hypothalamic area are responsive to acute HFD. Moreover, orexin signaling blockade, with the orexin 1 receptor antagonist SB-334867, reduces acute HFD consumption and c-Fos induction in the VTA but not in the other mesolimbic nuclei under study. Finally, we found that most orexin neurons responsive to acute HFD innervate the VTA. Our results show that acute HFD consumption recruits the mesolimbic system and that the full manifestation of this eating behavior requires the activation of orexin signaling.  相似文献   

9.

Aims

To determine the impact of maternal and post-weaning consumption of a high fat diet on endothelium-dependent vasorelaxation and redox regulation in adult male mouse offspring.

Methods

Female C57BL6J mice were fed an obesogenic high fat diet (HF, 45% kcal fat) or standard chow (C, 21% kcal fat) pre-conception and throughout pregnancy and lactation. Post-weaning, male offspring were continued on the same diet as their mothers or placed on the alternative diet to give 4 dietary groups (C/C, HF/C, C/HF and HF/HF) which were studied at 15 or 30 weeks of age.

Results

There were significant effects of maternal diet on offspring body weight (p<0.004), systolic blood pressure (p = 0.026) and endothelium-dependent relaxation to ACh (p = 0.004) and NO production (p = 0.005) measured in the femoral artery. With control for maternal diet there was also an effect of offspring post-weaning dietary fat to increase systolic blood pressure (p<0.0001) and reduce endothelium-dependent relaxation (p = 0.022) and ACh-mediated NO production (p = 0.007). There was also a significant impact of age (p<0.005). Redox balance was perturbed, with altered regulation of vascular enzymes involved in ROS/NO signalling.

Conclusions

Maternal consumption of a HF diet is associated with changes in vascular function and oxidative balance in the offspring of similar magnitude to those seen with consumption of a high fat diet post-weaning. Further, this disadvantageous vascular phenotype is exacerbated by age to influence the risk of developing obesity, raised blood pressure and endothelial dysfunction in adult life.  相似文献   

10.
IntroductionThe decline in birth rates is a concern in public health. Fertility is partly determined before birth by the intrauterine environment and prenatal exposure to maternal stress could, through hormonal disturbance, play a role. There has been such evidence from animal studies but not from humans. We aimed to examine the association between prenatal stress due to maternal bereavement following the death of a relative and childbirths in the offspring.ResultsA total of 4,121,596 subjects were followed-up until up to 41 years of age. Of these subjects, 93,635 (2.3%) were exposed and 981,989 (23.8%) had at least one child during follow-up time. Compared to unexposed, the hazard ratio (HR) [95% confidence interval] of having at least one child for exposed males and females were 0.98 [0.96–1.01] and 1.01 [0.98–1.03], respectively. We found a slightly reduced probability of having children in females born to mothers who lost a parent with HR = 0.97 [0.94–0.99] and increased probability in females born to mothers who lost another child (HR = 1.09 [1.04–1.14]), the spouse (HR = 1.29 [1.12–1.48]) or a sibling (HR = 1.13 [1.01–1.27]).ConclusionsOur results suggested no overall association between prenatal exposure to maternal stress and having a child in early adulthood but a longer time of follow-up is necessary in order to reach a firmer conclusion.  相似文献   

11.
It is increasingly recognized that intra-uterine growth restriction (IUGR) is associated with an increased risk of metabolic disorders in late life. Previous studies showed that mice exposed to LPS in late gestation induced fetal IUGR. The present study investigated the effects of maternal LPS exposure during pregnancy on metabolic phenotypes in female adult offspring. Pregnant mice were intraperitoneally injected with LPS (50 µg/kg) daily from gestational day (GD)15 to GD17. After lactation, female pups were fed with standard-chow diets (SD) or high-fat diets (HFD). Glucose tolerance test (GTT) and insulin tolerance test (ITT) were assessed 8 and 12 weeks after diet intervention. Hepatic triglyceride content was examined 12 weeks after diet intervention. As expected, maternal LPS exposure during pregnancy resulted in fetal IUGR. Although there was an increasing trend on fat mass in female offspring whose dams were exposed to LPS during pregnancy, maternal LPS exposure during pregnancy did not elevate the levels of fasting blood glucose and serum insulin and hepatic triglyceride content in female adult offspring. Moreover, maternal LPS exposure during pregnancy did not alter insulin sensitivity in adipose tissue and liver in female adult offspring. Further analysis showed that maternal LPS exposure during pregnancy did not exacerbate HFD-induced glucose tolerance and insulin resistance in female adult offspring. In addition, maternal LPS exposure during pregnancy did not aggravate HFD-induced elevation of hepatic triglyceride content in female adult offspring. In conclusion, LPS-induced IUGR does not alter metabolic phenotypes in adulthood.  相似文献   

12.
Previously, we have shown that a maternal low protein diet, fed exclusively during the preimplantation period of mouse development (Emb-LPD), is sufficient to induce by the blastocyst stage a compensatory growth phenotype in late gestation and postnatally, correlating with increased risk of adult onset cardiovascular disease and behavioural dysfunction. Here, we examine mechanisms of induction of maternal Emb-LPD programming and early compensatory responses by the embryo. Emb-LPD induced changes in maternal serum metabolites at the time of blastocyst formation (E3.5), notably reduced insulin and increased glucose, together with reduced levels of free amino acids (AAs) including branched chain AAs leucine, isoleucine and valine. Emb-LPD also caused reduction in the branched chain AAs within uterine fluid at the blastocyst stage. These maternal changes coincided with an altered content of blastocyst AAs and reduced mTORC1 signalling within blastocysts evident in reduced phosphorylation of effector S6 ribosomal protein and its ratio to total S6 protein but no change in effector 4E-BP1 phosphorylated and total pools. These changes were accompanied by increased proliferation of blastocyst trophectoderm and total cells and subsequent increased spreading of trophoblast cells in blastocyst outgrowths. We propose that induction of metabolic programming following Emb-LPD is achieved through mTORC1signalling which acts as a sensor for preimplantation embryos to detect maternal nutrient levels via branched chain AAs and/or insulin availability. Moreover, this induction step associates with changes in extra-embryonic trophectoderm behaviour occurring as early compensatory responses leading to later nutrient recovery.  相似文献   

13.
Tsutsugamushi disease is an infectious disease transmitted to humans through the bite of the Orientia tsutsugamushi-infected chigger mite; however, host-pathogen interactions and the precise mechanisms of damage in O. tsutsugamushi infections have not been fully elucidated. Here, we analyzed the global metabolic effects of O. tsutsugamushi infection on the host using 1H-NMR and UPLC-Q-TOF mass spectroscopy coupled with multivariate statistical analysis. In addition, the effect of O. tsutsugamushi infection on metabolite concentrations over time was analyzed by two-way ANOVAs. Orthogonal partial least squares-discriminant analysis (OPLS-DA) showed distinct metabolic patterns between control and O. tsutsugamushi-infected mice in liver, spleen, and serum samples. O. tsutsugamushi infection caused decreased energy production and deficiencies in both remethylation sources and glutathione. In addition, O. tsutsugamushi infection accelerated uncommon energy production pathways (i.e., excess fatty acid and protein oxidation) in host body. Infection resulted in an enlarged spleen with distinct phospholipid and amino acid characteristics. This study suggests that metabolite profiling of multiple organ tissues and serum could provide insight into global metabolic changes and mechanisms of pathology in O. tsutsugamushi-infected hosts.  相似文献   

14.
Maternal deprivation (MD) during neonatal life has diverse long-term effects, including affectation of metabolism. Indeed, MD for 24 hours during the neonatal period reduces body weight throughout life when the animals are maintained on a normal diet. However, little information is available regarding how this early stress affects the response to increased metabolic challenges during postnatal life. We hypothesized that MD modifies the response to a high fat diet (HFD) and that this response differs between males and females. To address this question, both male and female Wistar rats were maternally deprived for 24 hours starting on the morning of postnatal day (PND) 9. Upon weaning on PND22 half of each group received a control diet (CD) and the other half HFD. MD rats of both sexes had significantly reduced accumulated food intake and weight gain compared to controls when raised on the CD. In contrast, when maintained on a HFD energy intake and weight gain did not differ between control and MD rats of either sex. However, high fat intake induced hyperleptinemia in MD rats as early as PND35, but not until PND85 in control males and control females did not become hyperleptinemic on the HFD even at PND102. High fat intake stimulated hypothalamic inflammatory markers in both male and female rats that had been exposed to MD, but not in controls. Reduced insulin sensitivity was observed only in MD males on the HFD. These results indicate that MD modifies the metabolic response to HFD intake, with this response being different between males and females. Thus, the development of obesity and secondary complications in response to high fat intake depends on numerous factors.  相似文献   

15.

Aim

We sought develop and characterize a diet-induced model of metabolic syndrome and its related diseases.

Methods

The experimental animals (Spague-Dawley rats) were randomly divided into two groups, and each group was fed a different feed for 48 weeks as follows: 1) standard control diet (SC), and 2) a high sucrose and high fat diet (HSHF). The blood, small intestine, liver, pancreas, and adipose tissues were sampled for analysis and characterization.

Results

Typical metabolic syndrome (MS), non-alcoholic fatty liver disease (NAFLD), and type II diabetes (T2DM) were common in the HSHF group after a 48 week feeding period. The rats fed HSHF exhibited signs of obesity, dyslipidemia, hyperglycaemia, glucose intolerance, and insulin resistance (IR). At the same time, these animals had significantly increased levels of circulating LPS, TNFα, and IL-6 and increased ALP in their intestinal tissue homogenates. These animals also showed a significant reduction in the expression of occluding protein. The HSHF rats showed fatty degeneration, inflammation, fibrosis, cirrhosis, and lipid accumulation when their liver pathologies were examined. The HSHF rats also displayed increased islet diameters from 12 to 24 weeks, while reduced islet diameters occurred from 36 to 48 weeks with inflammatory cell infiltration and islet fat deposition. The morphometry of adipocytes in HSHF rats showed hypertrophy and inflammatory cell infiltration. HSHF CD68 analysis showed macrophage infiltration and significant increases in fat and pancreas size. HSHF Tunel analysis showed significant increases in liver and pancreas cell apoptosis.

Conclusions

This work demonstrated the following: 1) a characteristic rat model of metabolic syndrome (MS) can be induced by a high sucrose and high fat diet, 2) this model can be used to research metabolic syndrome and its related diseases, such as NAFLD and T2DM, and 3) intestinal endotoxemia (IETM) may play an important role in the pathogenesis of MS and related diseases, such as NAFLD and T2DM.  相似文献   

16.
Simazine is a triazine herbicide that is being widely applied worldwide and commonly detected in surface and groundwater. Despite its popular use in controlling weeds and algae, very limited information is available regarding its toxicity. In the present study, pregnant mice were orally exposed to low doses (0, 5, 50, or 500 µg/kg body weight per day) of simazine during gestation and lactation, during which no overt maternal toxic response was detected, and their offspring was assessed. Simazine-exposed male offspring showed decreased body, testicular, and epididymis weight, increased testicular apoptosis, and decreased sperm concentrations. Differentially-expressed genes in the testes of male offspring exposed to simazine were identified by DNA microarray, revealing 775 upregulated and 791 downregulated genes; among these, the relaxin-family peptide receptor 1 (Rxfp1), which is the receptor for relaxin hormone, was significantly downregulated. In addition, the expression of target genes in the relaxin pathway, including nitric oxide synthase 2 (Nos2) and Nos3, was significantly decreased in simazine-exposed F1 testes. Moreover, simazine inhibited NO release, and knockdown of Rxfp1 blocked the inhibitory action of simazine on NO production in testicular Leydig cells. Therefore, the present study provides a better understanding of the toxicities associated with the widely used herbicide simazine at environmentally relevant doses by demonstrating that maternal exposure interferes with the pleotropic relaxin-NO signaling pathway, impairing normal development and reproductive activity of male offspring.  相似文献   

17.
Isoflavone (IF), a type of phytoestrogen, has multiple beneficial effects, but too much phytoestrogen can have adverse effects on offspring. To examine whether chronic exposure to high IF has adverse effects on reproductive development, mice offspring were exposed to IF through dietary administration to dams during pregnancy and lactation and to the offspring directly after weaning until sacrifice. In male offspring, there was no difference between the IF group and controls; however, in female offspring in the IF group, remarkably earlier puberty and induction of multioocyte follicles on postnatal day (PND) 21 were observed. Gene expression levels of estrogen receptor β decreased in the ovary and vagina on PND 21. These results suggest that chronic exposure to higher than normal levels of IF induces alterations in the reproductive development of female mice through an estrogenic effect.  相似文献   

18.
R Zhou  S Wang  X Zhu 《PloS one》2012,7(8):e42443
Prenatal exposure to high-level ethanol (EtOH) has been reported to produce hyperlocomotion in offspring. Previous studies have demonstrated synaptic plasticity in cortical afferent to the dorsolateral (DL) striatum is involved in the pathogensis of hyperlocomotion. Here, prenatal EtOH-exposed rat offspring were used to investigate whether maternal EtOH exposure affected synaptic plasticity in the DL striatum. We found high-frequency stimulation (HFS) induced a weaker long-term potentiation (LTP) in EtOH rats than that in control rats at postnatal day (PD) 15. The same protocol of HFS induced long-term depression (LTD) in control group but still LTP in EtOH group at PD 30 or PD 40. Furthermore, enhancement of basal synaptic transmission accompanied by the decrease of pair-pulse facilitation (PPF) was observed in PD 30 EtOH offspring. The perfusion with D1-type receptors (D1R) antagonist SCH23390 recovered synaptic transmission and blocked the induction of abnormal LTP in PD 30 EtOH offspring. The perfusion with D2-type receptors (D2R) agonist quinpirole reversed EtOH-induced LTP into D1R- and metabotropic glutamate receptor-dependent LTD. The data provide the functional evidence that prenatal ethanol exposure led to the persistent abnormal synaptic plasticity in the DL striatum via disturbing the balance between D1R and D2R.  相似文献   

19.
Maternal obesity induced by a high fat (HF) diet may program susceptibility in offspring, altering pancreatic development and causing later development of chronic degenerative diseases, such as obesity and diabetes. Female mice were fed standard chow (SC) or an HF diet for 8 weeks prior to mating and during the gestational and lactational periods. The male offspring were assessed at birth, at 10 days, and at 3 months of age. The body mass (BM) gain was 50% greater before pregnancy and 80% greater during pregnancy in HF dams than SC dams. Dams fed an HF diet showed higher oral glucose tolerance test (OGTT), blood pressure, serum corticosterone, and insulin levels than dams fed SC. At 10 days of age and at 3 mo old the HF offspring showed greater BM and higher blood glucose levels than the SC offspring. The mean diameter of the islets had increased by 37% in the SC offspring and by 155% in the HF offspring at 10 days of age. The islet mass ratio (IM/PM) was 88% greater in the HF offspring at 10 days of age, and 107% greater at 3 mo of age, compared to the values obtained at birth. The HF offspring had a beta cell mass (BCM)/PM ratio 54% lower than SC offspring at birth. However, HF offspring displayed a 146% increase in the BCM/PM ratio at 10 days of age, and 112% increase at 3 months of age than values at birth. A 3 mo of age, the HF offspring showed a greater OGTT and higher levels of than SC offspring. In conclusion, a maternal HF diet consumed during the preconceptional period and throughout the gestational and lactational periods in mice results in dramatic alterations in the pancreata of the offspring.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号