首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poor patient compliance, untoward reactions and unstable blood drug levels after the bolus administration are impeding the pharmacotherapy for insobriety. A long-acting preparation may address these limitations. The aim of this paper was to further investigate the in vitro characteristics and in vivo performances of nalmefene microspheres. Nalmefene was blended with poly (lactide-co-glycolide) (PLGA) to prepare the target microspheres by an O/O emulsification solvent evaporation method. The prepared microspheres exhibited a controlled release profile of nalmefene in vitro over 4 weeks, which was well fitted with a first-order model. In vitro degradation study showed that the drug release in vitro was dominated by both drug diffusion and polymer degradation mechanisms. Pharmacokinetics study indicated that the prepared microspheres could provide a relatively constant of nalmefene plasma concentration for at least one month in rats. The in vivo pharmacokinetics profile was well correlated with the in vitro drug release. Pharmacodynamics studies revealed that the drug loaded microspheres could produce a long-acting antagonism efficacy on rats. These results demonstrated the promising application of injectable PLGA microspheres containing nalmefene for the long-term treatment of alcohol dependence.  相似文献   

2.
The objective of this study was to investigate the sustained release of a hydrophilic drug, montelukast (MK), from two biodegradable polymeric drug delivery systems, in situ implant (ISI) and in situ microparticles (ISM). N-Methyl pyrrolidone (NMP), dimethyl sulfoxide (DMSO), triacetin, and ethyl acetate were selected as solvents. The release of 10% (w/v) MK from both systems containing poly-lactic-co-glycolic acid (PLGA) as the biodegradable polymer was compared. Upon contact with the aqueous medium, the PLGA in ISI and ISM systems solidified resulting in implants and microparticles, respectively. The in vitro drug release from the ISI system showed marked difference from miscible solvents (NMP and DMSO) than the partially miscible ones (triacetin and ethyl acetate), and the drug release decreased with increased PLGA concentration. In the ISM system, the initial in vitro drug release decreased with decreased ratio of polymer phase to external oil phase. In vivo studies in rats showed that ISM had slower drug release than the drug release from ISI. Also, the ISM system when compared to ISI system had significantly reduced initial burst effect. In vitro as well as the in vivo studies for both ISI and ISM systems showed sustained release of MK. The ISM system is suitable for sustained release of MK over 4-week period with a lower initial burst compared to the ISI system. Stability studies of the ISI and ISM formulations showed that MK is stable in the formulations stored at 4°C for more than 2 years.  相似文献   

3.
A multiunit floating drug delivery system of rosiglitazone maleate has been developed by encapsulating the drug into Eudragit® RS100 through nonaqueous emulsification/solvent evaporation method. The in vitro performances of microspheres were evaluated by yield (%), particle size analysis, drug entrapment efficiency, in vitro floating behavior, surface topography, drug–polymer compatibility, crystallinity of the drug in the microspheres, and drug release studies. In vitro release was optimized by a {3, 3} simplex lattice mixture design to achieve predetermined target release. The in vivo performance of the optimized formulation was evaluated in streptozotocin-induced diabetic rats. The results showed that floating microspheres could be successfully prepared with good yields (69–75%), high entrapment (78-97%), narrow size distribution, and desired target release with the help of statistical design of experiments from very small number of formulations. In vivo evaluation in albino rats suggested that floating microspheres of rosiglitazone could be a promising approach for better glycemic control.  相似文献   

4.
A subcutaneous exenatide delivery system was developed and characterized in vitro and in vivo. The results clearly showed that the exenatide loaded PLGA microspheres prepared by using a non-aqueous processing medium had low burst release and high drug encapsulation efficiency. Exenatide loaded in the microspheres preserved its bioactivity. The pharmacokinetics parameters were determined after subcutaneous administration of microspheres to SD rats. The plasma concentration of the single dose of the sustained-release microspheres attained Cmax of 108.19 ± 14.92 ng/ml at tmax of 1.33 ± 0.58 h and the t1/2 was 120.65 ± 44.18 h. There was a linear correlation between the in vitro and in vivo release behavior (R2 = 0.888). Exenatide loaded microspheres may prove to have great potential for clinical use.  相似文献   

5.
In this study, we have evaluated the interactions of zein microspheres with different class of drugs (hydrophobic, hydrophilic, and amphiphilic) using in vitro and in silico analysis. Zein microspheres loaded with aceclofenac, metformin, and promethazine has been developed by solvent evaporation technique and analyzed for its compatibility. The physical characterization depicted the proper encapsulation of hydrophobic drug in the microspheres. The in vitro release study revealed the sustaining ability of the microspheres in the following order: hydrophobic > hydrophilic > amphiphilic. In silico analysis also confirmed the better binding affinity and greater interactions of hydrophobic drug with zein. The above results revealed that zein is more suitable for hydrophobic drugs in the development of sustained drug delivery systems using solvent evaporation technique. The study therefore envisages a scope for identifying the most suitable polymer for a sustained drug delivery system in accordance with the nature of the drug.KEY WORDS: hydrophilic drugs, hydrophobic drugs, in silico analysis, protein-drug interactions, solvent evaporation, zein microspheres  相似文献   

6.
The purpose of this study was to develop a once daily sustained release tablet of aceclofenac using chitosan and an enteric coating polymer (hydroxypropyl methylcellulose phthalate or cellulose acetate phthalate). Overall sustained release for 24 h was achieved by preparing a double-layer tablet in which the immediate release layer was formulated for a prompt release of the drug and the sustained release layer was designed to achieve a prolonged release of drug. The preformulation studies like IR spectroscopic and differential scanning calorimetry showed the absence of drug–excipient interactions. The tablets were found within the permissible limits for various physicochemical parameters. Scanning electron microscopy was used to visualize the surface morphology of the tablets and to confirm drug release mechanisms. Good equivalence in the drug release profile was observed when drug release pattern of the tablet containing chitosan and hydroxypropyl methylcellulose phthalate (M-7) was compared with that of marketed tablet. The optimized tablets were stable at accelerated storage conditions for 6 months with respect to drug content and physical appearance. The results of pharmacokinetic studies in human volunteers showed that the optimized tablet (M-7) exhibited no difference in the in vivo drug release in comparison with marketed tablet. No significant difference between the values of pharmacokinetic parameters of M-7 and marketed tablets was observed (p > 0.05; 95% confidence intervals). However the clinical studies in large scale and, long term and extensive stability studies at different conditions are required to confirm these results.Key words: aceclofenac, chitosan, matrix tablet, pharmacokinetics, sustained release  相似文献   

7.
Etoposide-loaded poly(lactic-co-glycolic acid) implants were developed for intravitreal application. Implants were prepared by a solvent-casting method and characterized in terms of content uniformity, morphology, drug-polymer interaction, stability, and sterility. In vitro drug release was investigated and the implant degradation was monitored by the percent of mass loss. Implants were inserted into the vitreous cavity of rabbits’ eye and the in vivo etoposide release profile was determined. Clinical examination and the Hen Egg Test-Chorioallantoic Membrane (HET-CAM) method were performed to evaluate the implant tolerance. The original chemical structure of the etoposide was preserved after incorporation in the polymeric matrix, which the drug was dispersed uniformly. In vitro, implants promoted sustained release of the drug and approximately 57% of the etoposide was released in 50 days. In vivo, devices released approximately 63% of the loaded drug in 42 days. Ophthalmic examination and HET-CAM assay revealed no evidence of toxic effects of implants. These results tend to show that etoposide-loaded implants could be potentially useful as an intraocular etoposide delivery system in the future.  相似文献   

8.
Accelerated in vitro release testing methodology has been developed as an indicator of product performance to be used as a discriminatory quality control (QC) technique for the release of clinical and commercial batches of biodegradable microspheres. While product performance of biodegradable microspheres can be verified by in vivo and/or in vitro experiments, such evaluation can be particularly challenging because of slow polymer degradation, resulting in extended study times, labor, and expense. Three batches of Leuprolide poly(lactic-co-glycolic acid) (PLGA) microspheres having varying morphology (process variants having different particle size and specific surface area) were manufactured by the solvent extraction/evaporation technique. Tests involving in vitro release, polymer degradation and hydration of the microspheres were performed on the three batches at 55°C. In vitro peptide release at 55°C was analyzed using a previously derived modification of the Weibull function termed the modified Weibull equation (MWE). Experimental observations and data analysis confirm excellent reproducibility studies within and between batches of the microsphere formulations demonstrating the predictability of the accelerated experiments at 55°C. The accelerated test method was also successfully able to distinguish the in vitro product performance between the three batches having varying morphology (process variants), indicating that it is a suitable QC tool to discriminate product or process variants in clinical or commercial batches of microspheres. Additionally, data analysis utilized the MWE to further quantify the differences obtained from the accelerated in vitro product performance test between process variants, thereby enhancing the discriminatory power of the accelerated methodology at 55°C.  相似文献   

9.
The development of sustained release formulations based on biodegradable polymers is a promising trend in modern pharmacology. Polyhydroxyalkanoates (PHA) attract increasing attention due to their biodegradability and high biocompatibility, which make them suitable for the development of novel drug dosage forms. We have produced poly(3-hydroxybutyrate) (PHB)-based microspheres loaded with the antitumor drug paclitaxel and investigated morphology, drug release kinetics and the effect of these microspheres on tumor cells in vitro. The data on the kinetics of drug release, biocompatibility and biological activity of the biopolymer microspheres in vitro have demonstrated that the studied system of prolonged drug release had lower toxicity and higher efficiency compared to the traditional dosage forms of paclitaxel.  相似文献   

10.
The objective of this study was to develop proliposomal formulation for a poorly bioavailable drug, tacrolimus. Proliposomes were prepared by thin film hydration method using different lipids such as hydrogenated soy phosphatidylcholine (HEPC), soy phosphatidylcholine (SPC), distearyl phosphatidylcholine (DSPC), dimyristoylphosphatidylcholine (DMPC), and dimyristoylphosphatidylglycerol sodium (DMPG) and cholesterol in various ratios. Proliposomes were evaluated for particle size, zeta potential, in vitro drug release, in vitro permeability, and in vivo pharmacokinetics. In vitro drug release was carried out in purified water using USP type II dissolution apparatus. In vitro drug permeation was studied using parallel artificial membrane permeation assay (PAMPA) and everted rat intestinal perfusion techniques. In vivo pharmacokinetic studies were conducted in male Sprague-Dawley (SD) rats. Among the different formulations, proliposomes with drug/DSPC/cholesterol in the ratio of 1:2:0.5 demonstrated the desired particle size and zeta potential. Enhanced drug release was observed with proliposomes compared to pure tacrolimus in purified water after 1 h. Tacrolimus permeability across PAMPA and everted rat intestinal perfusion models was significantly higher with proliposomes. The optimized formulation of proliposomes indicated a significant improvement in the rate and absorption of tacrolimus. Following a single oral administration, a relative bioavailability of 193.33% was achieved compared to pure tacrolimus suspension.  相似文献   

11.
In Vitro Insulin Release from Thermosensitive Chitosan Hydrogel   总被引:1,自引:0,他引:1  
Recently, great attention has been paid to in situ gel-forming chitosan/glycerol-phosphate (chitosan/Gp) solution due to their good biodegradability and thermosensitivity. This in situ gel-forming system is injectable fluid that can be introduced into the body in a minimally invasive manner prior to solidifying within the desired tissue. At the present study, insulin release from chitosan/Gp solution has been investigated. Insulin in different concentrations was loaded in two formulations of chitosan/Gp solution and in vitro drug release was studied over a period of 3 weeks. Results indicated that the release of insulin from chitosan/Gp gel decreases by increasing in Gp salt and initial insulin concentration. Stability of released insulin was investigated by 8-anilino-1-naphthalenesulfonate probe. Results proved that insulin have been released in its native form. Because of simple preparation and administration, prolonged release of insulin and stability of released insulin, this in situ gel-forming system could be used as a controlled release delivery system for insulin.KEY WORDS: biodegradable, chitosan, controlled release, in situ forming, insulin  相似文献   

12.
Dental implantation is an effective standard treatment modality to restore missing teeth and maxillofacial defects. However, in diabetics there is an increased risk for implant failure due to impaired peri-implant osseous healing. Early topical insulin treatment was recently shown to normalize diabetic bone healing by rectifying impairments in osteoblastic activities. In this study, insulin/poly(lactic-co-glycolic acid) (PLGA) microspheres were prepared by a double-emulsion solvent evaporation method. Microspheres were then incorporated in fibrin gel to develop a local drug delivery system for diabetic patients requiring implant treatment. In vitro release of insulin from fibrin gel loaded with these microspheres was assessed, and sustained prolonged insulin release over 21 days ascertained. To assess the bioactivity of released insulin and determine whether slow release might improve impaired diabetic bone formation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), alkaline phosphatase (ALP) activity, mineralized nodule formation, and ELISA (enzyme-linked immunosorbent assay) assays were performed. The insulin released from the drug delivery system stimulated cell growth in previously inhibited cells, and ameliorated the impaired bone-forming ability of human MG-63 cells under high glucose conditions. Fibrin gel loaded with insulin/PLGA microspheres shows potential for improving peri-implant bone formation in diabetic patients.  相似文献   

13.
The objective of this investigation was to prepare sustained release capsule containing coated matrix granules of metoprolol tartrate and to study its in vitro release and in vivo absorption. The design of dosage form was performed by choosing hydrophilic hydroxypropyl methyl cellulose (HPMC K100M) and hydrophobic ethyl cellulose (EC) polymers as matrix builders and Eudragit® RL/RS as coating polymers. Granules were prepared by composing drug with HPMC K100M, EC, dicalcium phosphate by wet granulation method with subsequent coating. Optimized formulation of metoprolol tartrate was formed by using 30% HPMC K100M, 20% EC, and ratio of Eudragit® RS/RL as 97.5:2.5 at 25% coating level. Capsules were filled with free flowing optimized granules of uniform drug content. This extended the release period upto 12 h in vitro study. Similarity factor and mean dissolution time were also reported to compare various dissolution profiles. The network formed by HPMC and EC had been coupled satisfactorily with the controlled resistance offered by Eudragit® RS. The release mechanism of capsules followed Korsemeyer–Peppas model that indicated significant contribution of erosion effect of hydrophilic polymer. Biopharmaceutical study of this optimized dosage form in rabbit model showed 10 h prolonged drug release in vivo. A close correlation (R2 = 0.9434) was established between the in vitro release and the in vivo absorption of drug. The results suggested that wet granulation with subsequent coating by fluidized bed technique, is a suitable method to formulate sustained release capsules of metoprolol tartrate and it can perform therapeutically better than conventional immediate release dosage form.Key words: biopharmaceutical evaluation, coated granules, metoprolol tartrate, sustained release  相似文献   

14.
Docetaxel (DTX) is a widely used anticancer drug for various solid tumors. However, its poor solubility in water and lack of specification are two limitations for clinical use. The aim of the study was to develop a thermosensitive chitosan/β-glycerophosphate (C/GP) hydrogel loaded with DTX for intratumoral delivery. The in vitro release profiles, in vivo antitumor efficacy, pharmacokinetics, and biodistribution of DTX-loaded C/GP hydrogel (DTX-C/GP) were evaluated. The results of in vitro release study demonstrated that DTX-C/GP had the property of controlled delivery for a reasonable time span of 3 weeks and the release period was substantially affected by initial DTX strength. The antitumor efficacy of DTX-C/GP was observed at 20 mg/kg in H22 tumor-bearing mice. It was found that the tumor volume was definitely minimized by intratumoral injection of DTX-C/GP. Compared with saline group, the tumor inhibition rate of blank gel, intravenous DTX solution, intratumoral DTX solution, and DTX-C/GP was 2.3%, 29.8%, 41.9%, and 58.1%, respectively. Further, the in vivo pharmacokinetic characteristics of DTX-C/GP correlated well with the in vitro release. DTX-C/GP significantly prolonged the DTX retention and maintained a high DTX concentration in tumor. The amount of DTX distributed to the normal tissues was minimized so that the toxicity was effectively reduced. In conclusion, DTX-C/GP demonstrated controlled release and significant efficacy and exhibited potential for further clinical development.  相似文献   

15.
This work aims to prepare sustained release buccal mucoadhesive lyophilized chitosan sponges of buspirone hydrochloride (BH) to improve its systemic bioavailability. Chitosan sponges were prepared using simple casting/freeze-drying technique according to 32 factorial design where chitosan grade was set at three levels (low, medium, and high molecular weight), and concentration of chitosan solution at three levels (0.5, 1, and 2%). Mucoadhesion force, ex vivo mucoadhesion time, percent BH released after 8 h (Q8h), and time for release of 50% BH (T50%) were chosen as dependent variables. Additional BH cup and core buccal chitosan sponge were prepared to achieve uni-directional BH release toward the buccal mucosa. Sponges were evaluated in terms of drug content, surface pH, scanning electron microscopy, swelling index, mucoadhesion strength, ex vivo mucoadhesion time, and in vitro drug release. Cup and core sponge (HCH 0.5E) were able to adhere to the buccal mucosa for 8 h. It showed Q8h of 68.89% and exhibited a uni-directional drug release profile following Higuchi diffusion model.KEY WORDS: buspirone HCL, casting/freeze-drying technique, chitosan, cup and core sponge, mucoadhesive buccal sponges  相似文献   

16.

Objective

The objective of this study was to develop and characterize alginate microspheres suitable for embolization with on-demand triggered doxorubicin (DOX) release and whereby the microspheres as well as the drug releasing process can be visualized in vivo using MRI.

Methods and Findings

For this purpose, barium crosslinked alginate microspheres were loaded with temperature sensitive liposomes (TSL/TSL-Ba-ms), which release their payload upon mild hyperthermia. These TSL contained DOX and [Gd(HPDO3A)(H2O)], a T1 MRI contrast agent, for real time visualization of the release. Empty alginate microspheres crosslinked with holmium ions (T2* MRI contrast agent, Ho-ms) were mixed with TSL-Ba-ms to allow microsphere visualization. TSL-Ba-ms and Ho-ms were prepared with a homemade spray device and sized by sieving. Encapsulation of TSL in barium crosslinked microspheres changed the triggered release properties only slightly: 95% of the loaded DOX was released from free TSL vs. 86% release for TSL-Ba-ms within 30 seconds in 50% FBS at 42°C. TSL-Ba-ms (76 ± 41 μm) and Ho-ms (64 ± 29 μm) had a comparable size, which most likely will result in a similar in vivo tissue distribution after an i.v. co-injection and therefore Ho-ms can be used as tracer for the TSL-Ba-ms. MR imaging of a TSL-Ba-ms and Ho-ms mixture (ratio 95:5) before and after hyperthermia allowed in vitro and in vivo visualization of microsphere deposition (T2*-weighted images) as well as temperature-triggered release (T1-weighted images). The [Gd(HPDO3A)(H2O)] release and clusters of microspheres containing holmium ions were visualized in a VX2 tumor model in a rabbit using MRI.

Conclusions

In conclusion, these TSL-Ba-ms and Ho-ms are promising systems for real-time, MR-guided embolization and triggered release of drugs in vivo.  相似文献   

17.
In this study, an optimized epichlorohydrin-crosslinked semi-interpenetrating polymer network xerogel matrix system (XePoMas) for the controlled delivery of sulpiride was prepared. The ability of XePoMas to sustain drug release was determined by in vitro and in vivo drug release experiments. Swelling of the xerogel over the 24-h experimental period ranged from 346 to 648%; swelling was observed to increase exponentially over the initial 8 h. In vitro drug release depicted a linear zero order drug release profile with an R 2 value of 0.9956. The ability of the fabricated XePoMas to sustain drug release and enhance bioavailability of sulpiride in vivo was investigated by evaluating the plasma drug concentration over 24 h in the large pig model. The optimized XePoMas formulation was shown to increase intestinal absorption of sulpiride to a greater extent than the marketed product in vivo, with a C max of 830.58 ng/mL after 15 h.  相似文献   

18.
Natural polysaccharides, due to their outstanding merits, have received more and more attention in the field of drug delivery. In the present study tamoxifen citrate, TMX (a non-steroidal antiestrogenic drug) loaded guar gum nanoparticles, GG NPs, crosslinked with glutaraldehyde were prepared for treatment of breast cancer. An oil in water (o/w) emulsion polymer cross-linking method was employed for preparation of blank and drug loaded sustained release nature biodegradable nanoparticles. Prepared nanoparticles were characterized by morphology in scanning electron microscope (SEM), size distribution in transmission electron microscope (TEM), TMX loading by high performance liquid chromatography (HPLC) and in vitro drug release characteristics. An overall sustained release of the drug from the biodegradable nanoparticles was observed in in vitro release studies. The release of TMX from GG NPs was found to be effected by guar gum and glutaraldehyde concentration. Regression coefficient (R2) analysis suggested that the predominant mechanism behind the drug release from the nanoparticles was time dependent release and diffusion. In vivo studies on female albino mice demonstrated maximum uptake of the drug by mammary tissue after 24 h of administration with drug loaded guar gum nanoparticles in comparison with that with the tablet form of the drug. These findings demonstrate that controlled release of TMX from GG NPs could be a potential alternative pharmaceutical formulation in passive targeting of TMX in breast cancer treatments.  相似文献   

19.
The objective of this study is to formulate lyophilized oral sustained release polymeric nanoparticles of nateglinide in order to decrease dosing frequency, minimize side effects, and increase bioavailability. Nateglinide-loaded poly Ɛ-caprolactone nanoparticles were prepared by emulsion solvent evaporation with ultrasonication technique and subjected to various studies for characterization including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, photon correlation spectroscopy and evaluated for in vitro drug release and pharmacodynamic studies. The influence of increase in polymer concentration, ultrasonication time, and solvent evaporation rate on nanoparticle properties was investigated. The formulations were optimized based on the above characterization, and the formulation using 5% polymer, 3-min sonication time, and rota-evaporated was found to have the best drug entrapment efficiency of 64.09 ± 4.27% and size of 310.40 ± 11.42 nm. Based on SEM, nanoparticles were found to be spherical with a smooth surface. In vitro drug release data showed that nanoparticles sustained the nateglinide release for over 12 h compared to conventional tablets (Glinate 60 mg), and drug release was found to follow Fickian mechanism. In vivo studies showed that nanoparticles prolonged the antidiabetic activity of nateglinide in rats significantly (p ≤ 0.05) compared to the conventional tablets (Glinate 60 mg) over a period of 12 h. Accelerated stability data indicated that there was minimal to no change in drug entrapment efficiency.KEY WORDS: drug encapsulation efficiency, nanoparticles, poly Ɛ-caprolactone (PCL), probe sonication  相似文献   

20.
Considering the advantageous for the rectal administration of non-steroidal anti-inflammatory drugs, the objective of this study was to formulate and evaluate rectal mucoadhesive hydrogels loaded with diclofenac-sodium chitosan (DFS-CS) microspheres. Hydroxypropyl methylcellulose (HPMC; 5%, 6%, and 7% w/w) and Carbopol 934 (1% w/w) hydrogels containing DFS-CS microspheres equivalent to 1% w/w active drug were prepared. The physicochemical characterization revealed that all hydrogels had a suitable pH for rectal application (6.5–7.4). The consistency of HPMC hydrogels showed direct proportionality to the concentration of the gelling agent, while carbopol 934 gel showed its difficulty for rectal administration. Farrow’s constant for all hydrogels were greater than one indicating pseudoplastic flow. In vitro drug release from the mucoadhesive hydrogel formulations showed a controlled drug release pattern, reaching 34.6–39.7% after 6 h. The kinetic analysis of the release data revealed that zero-order was the prominent release mechanism. The mucoadhesion time of 7% w/w HPMC hydrogel was 330 min, allowing the loaded microspheres to be attached to the surface of rectal mucosa. Histopathological examination demonstrated the lowest irritant response to the hydrogel loaded with DFS-CS microspheres in response to other forms of the drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号