首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

A complex community of microorganisms is responsible for efficient plant cell wall digestion by many herbivores, notably the ruminants. Understanding the different fibrolytic mechanisms utilized by these bacteria has been of great interest in agricultural and technological fields, reinforced more recently by current efforts to convert cellulosic biomass to biofuels.

Methodology/Principal Findings

Here, we have used a bioinformatics-based approach to explore the cellulosome-related components of six genomes from two of the primary fiber-degrading bacteria in the rumen: Ruminococcus flavefaciens (strains FD-1, 007c and 17) and Ruminococcus albus (strains 7, 8 and SY3). The genomes of two of these strains are reported for the first time herein. The data reveal that the three R. flavefaciens strains encode for an elaborate reservoir of cohesin- and dockerin-containing proteins, whereas the three R. albus strains are cohesin-deficient and encode mainly dockerins and a unique family of cell-anchoring carbohydrate-binding modules (family 37).

Conclusions/Significance

Our comparative genome-wide analysis pinpoints rare and novel strain-specific protein architectures and provides an exhaustive profile of their numerous lignocellulose-degrading enzymes. This work provides blueprints of the divergent cellulolytic systems in these two prominent fibrolytic rumen bacterial species, each of which reflects a distinct mechanistic model for efficient degradation of cellulosic biomass.  相似文献   

2.

Background and Aims

In some lupin species, phosphate deficiency induces cluster-root formation, which enhances P uptake by increasing root surface area and, more importantly, the release of root exudates which enhances P availability.

Methods

Three species of Lupinus, L. albus, L. atlanticus and L. micranthus, with inherently different relative growth rates were cultivated under hydroponics in a greenhouse at four phosphate concentrations (1, 10, 50 and 150 µm) to compare the role of internal P in regulating cluster-root formation.

Key Results

The highest growth rate was observed in L. atlanticus, followed by L. albus and L. micranthus. At 1 µm P, cluster-root formation was markedly induced in all three species. The highest P uptake and accumulation was observed in L. micranthus, followed by L. atlanticus and then L. albus. Inhibition of cluster-root formation was severe at 10 µm P in L. atlanticus, but occurred stepwise with increasing P concentration in the root medium in L. albus.

Conclusions

In L. atlanticus and L. albus cluster-root formation was suppressed by P treatments above 10 µm, indicating a P-inducible regulating system for cluster-root formation, as expected. By contrast, production of cluster roots in L. micranthus, in spite of a high internal P concentration, indicated a lower sensitivity to P status, which allowed P-toxicity symptoms to develop.  相似文献   

3.

Background and Aims

Some Lupinus species produce cluster roots in response to low plant phosphorus (P) status. The cause of variation in cluster-root formation among cluster-root-forming Lupinus species is unknown. The aim of this study was to investigate if cluster-root formation is, in part, dependent on different relative growth rates (RGRs) among Lupinus species when they show similar shoot P status.

Methods

Three cluster-root-forming Lupinus species, L. albus, L. pilosus and L. atlanticus, were grown in washed river sand at 0, 7·5, 15 or 40 mg P kg−1 dry sand. Plants were harvested at 34, 42 or 62 d after sowing, and fresh and dry weight of leaves, stems, cluster roots and non-cluster roots of different ages were measured. The percentage of cluster roots, tissue P concentrations, root exudates and plant RGR were determined.

Key Results

Phosphorus treatments had major effects on cluster-root allocation, with a significant but incomplete suppression in L. albus and L. pilosus when P supply exceeded 15 mg P kg−1 sand. Complete suppression was found in L. atlanticus at the highest P supply; this species never invested more than 20 % of its root weight in cluster roots. For L. pilosus and L. atlanticus, cluster-root formation was decreased at high internal P concentration, irrespective of RGR. For L. albus, there was a trend in the same direction, but this was not significant.

Conclusions

Cluster-root formation in all three Lupinus species was suppressed at high leaf P concentration, irrespective of RGR. Variation in cluster-root formation among the three species cannot be explained by species-specific variation in RGR or leaf P concentration.  相似文献   

4.

Background and Aims

The anatomy of Equisetum stems is characterized by the occurrence of vallecular and carinal canals. Previous studies on the carinal canals in several Equisetum species suggest that they convey water from one node to another.

Methods

Cell wall composition and ultrastructure have been studied using immunocytochemistry and electron microscopy, respectively. Serial sectioning and X-ray computed tomography were employed to examine the internode–node–internode transition of Equisetum ramosissimum.

Key Results

The distribution of the LM1 and JIM20 extensin epitopes is restricted to the lining of carinal canals. The monoclonal antibodies JIM5 and LM19 directed against homogalacturonan with a low degree of methyl esterification and the CBM3a probe recognizing crystalline cellulose also bound to this lining. The xyloglucan epitopes recognized by LM15 and CCRC-M1 were only detected in this lining after pectate lyase treatment. The carinal canals, connecting consecutive rings of nodal xylem, are formed by the disruption and dissolution of protoxylem elements during elongation of the internodes. Their inner surface appears smooth compared with that of vallecular canals.

Conclusions

The carinal canals in E. ramosissimum have a distinctive lining containing pectic homogalacturonan, cellulose, xyloglucan and extensin. These canals might function as water-conducting channels which would be especially important during the elongation of the internodes when protoxylem is disrupted and the metaxylem is not yet differentiated. How the molecularly distinct lining relates to the proposed water-conducting function of the carinal canals requires further study. Efforts to elucidate the spatial and temporal distribution of cell wall polymers in a taxonomically broad range of plants will probably provide more insight into the structural–functional relationships of individual cell wall components or of specific configurations of cell wall polymers.  相似文献   

5.

Background

Ruminococcus flavefaciens is a predominant cellulolytic rumen bacterium, which forms a multi-enzyme cellulosome complex that could play an integral role in the ability of this bacterium to degrade plant cell wall polysaccharides. Identifying the major enzyme types involved in plant cell wall degradation is essential for gaining a better understanding of the cellulolytic capabilities of this organism as well as highlighting potential enzymes for application in improvement of livestock nutrition and for conversion of cellulosic biomass to liquid fuels.

Methodology/Principal Findings

The R. flavefaciens FD-1 genome was sequenced to 29x-coverage, based on pulsed-field gel electrophoresis estimates (4.4 Mb), and assembled into 119 contigs providing 4,576,399 bp of unique sequence. As much as 87.1% of the genome encodes ORFs, tRNA, rRNAs, or repeats. The GC content was calculated at 45%. A total of 4,339 ORFs was detected with an average gene length of 918 bp. The cellulosome model for R. flavefaciens was further refined by sequence analysis, with at least 225 dockerin-containing ORFs, including previously characterized cohesin-containing scaffoldin molecules. These dockerin-containing ORFs encode a variety of catalytic modules including glycoside hydrolases (GHs), polysaccharide lyases, and carbohydrate esterases. Additionally, 56 ORFs encode proteins that contain carbohydrate-binding modules (CBMs). Functional microarray analysis of the genome revealed that 56 of the cellulosome-associated ORFs were up-regulated, 14 were down-regulated, 135 were unaffected, when R. flavefaciens FD-1 was grown on cellulose versus cellobiose. Three multi-modular xylanases (ORF01222, ORF03896, and ORF01315) exhibited the highest levels of up-regulation.

Conclusions/Significance

The genomic evidence indicates that R. flavefaciens FD-1 has the largest known number of fiber-degrading enzymes likely to be arranged in a cellulosome architecture. Functional analysis of the genome has revealed that the growth substrate drives expression of enzymes predicted to be involved in carbohydrate metabolism as well as expression and assembly of key cellulosomal enzyme components.  相似文献   

6.

Background and Aims

Changes occurring in the macromolecular traits of cell wall components in elm wood following attack by Ophiostoma novo-ulmi, the causative agent of Dutch elm disease (DED), are poorly understood. The purpose of this study was to compare host responses and the metabolic profiles of wood components for two Dutch elm (Ulmus) hybrids, ‘Groeneveld’ (a susceptible clone) and ‘Dodoens’ (a tolerant clone), that have contrasting survival strategies upon infection with the current prevalent strain of DED.

Methods

Ten-year-old plants of the hybrid elms were inoculated with O. novo-ulmi ssp. americana × novo-ulmi. Measurements were made of the content of main cell wall components and extractives, lignin monomer composition, macromolecular traits of cellulose and neutral saccharide composition.

Key Results

Upon infection, medium molecular weight macromolecules of cellulose were degraded in both the susceptible and tolerant elm hybrids, resulting in the occurrence of secondary cell wall ruptures and cracks in the vessels, but rarely in the fibres. The 13C nuclear magnetic resonance spectra revealed that loss of crystalline and non-crystalline cellulose regions occurred in parallel. The rate of cellulose degradation was influenced by the syringyl:guaiacyl ratio in lignin. Both hybrids commonly responded to the medium molecular weight cellulose degradation with the biosynthesis of high molecular weight macromolecules of cellulose, resulting in a significant increase in values for the degree of polymerization and polydispersity. Other responses of the hybrids included an increase in lignin content, a decrease in relative proportions of d-glucose, and an increase in proportions of d-xylose. Differential responses between the hybrids were found in the syringyl:guaiacyl ratio in lignin.

Conclusions

In susceptible ‘Groeneveld’ plants, syringyl-rich lignin provided a far greater degree of protection from cellulose degradation than in ‘Dodoens’, but only guaiacyl-rich lignin in ‘Dodoens’ plants was involved in successful defence against the fungus. This finding was confirmed by the associations of vanillin and vanillic acid with the DED-tolerant ‘Dodoens’ plants in a multivariate analysis of wood traits.  相似文献   

7.

Background and Aims

Phosphorus (P) is a major factor controlling cluster-root formation. Cluster-root proliferation tends to concentrate in organic matter (OM)-rich surface-soil layers, but the nature of this response of cluster-root formation to OM is not clear. Cluster-root proliferation in response to localized application of OM was characterized in Lupinus albus (white lupin) grown in stratified soil columns to test if the stimulating effect of OM on cluster-root formation was due to (a) P release from breakdown of OM; (b) a decrease in soil density; or (c) effects of micro-organisms other than releasing P from OM.

Methods

Lupin plants were grown in three-layer stratified soil columns where P was applied at 0 or 330 mg P kg−1 to create a P-deficient or P-sufficient background, and OM, phytate mixed with OM, or perlite was applied to the top or middle layers with or without sterilization.

Key Results

Non-sterile OM stimulated cluster-root proliferation and root length, and this effect became greater when phytate was supplied in the presence of OM. Both sterile OM and perlite significantly decreased cluster-root formation in the localized layers. The OM position did not change the proportion of total cluster roots to total roots in dry biomass among no-P treatments, but more cluster roots were concentrated in the OM layers with a decreased proportion in other places.

Conclusions

Localized application of non-sterile OM or phytate plus OM stimulated cluster-root proliferation of L. albus in the localized layers. This effect is predominantly accounted for by P release from breakdown of OM or phytate, but not due to a change in soil density associated with OM. No evidence was found for effects of micro-organisms in OM other than those responsible for P release.  相似文献   

8.

Background and Aims

Genetic connectivity between plant populations allows for exchange and dispersal of adaptive genes, which can facilitate plant population persistence particularly in rapidly changing environments.

Methods

Patterns of historic gene flow, flowering phenology and contemporary pollen flow were investigated in two common herbs, Ranunculus bulbosus and Trifolium montanum, along an altitudinal gradient of 1200–1800 m a.s.l. over a distance of 1 km among five alpine meadows in Switzerland.

Key Results

Historic gene flow was extensive, as revealed by Fst values of 0·01 and 0·007 in R. bulbosus and T. montanum, respectively, by similar levels of allelic richness among meadows and by the grouping of all individuals into one genetic cluster. Our data suggest contemporary pollen flow is not limited across altitudes in either species but is more pronounced in T. montanum, as indicated by the differential decay of among-sibships correlated paternity with increasing spatial distance. Flowering phenology among meadows was not a barrier to pollen flow in T. montanum, as the large overlap between meadow pairs was consistent with the extensive pollen flow. The smaller flowering overlap among R. bulbosus meadows might explain the slightly more limited pollen flow detected.

Conclusions

High levels of pollen flow among altitudes in both R. bulbosus and T. montanum should facilitate exchange of genes which may enhance adaptive responses to rapid climate change.  相似文献   

9.
10.
We have been developing the cellulases of Thermobifida fusca as a model to explore the conversion from a free cellulase system to the cellulosomal mode. Three of the six T. fusca cellulases (endoglucanase Cel6A and exoglucanases Cel6B and Cel48A) have been converted in previous work by replacing their cellulose-binding modules (CBMs) with a dockerin, and the resultant recombinant “cellulosomized” enzymes were incorporated into chimeric scaffolding proteins that contained cohesin(s) together with a CBM. The activities of the resultant designer cellulosomes were compared with an equivalent mixture of wild-type enzymes. In the present work, a fourth T. fusca cellulase, Cel5A, was equipped with a dockerin and intervening linker segments of different lengths to assess their contribution to the overall activity of simple one- and two-enzyme designer cellulosome complexes. The results demonstrated that cellulose binding played a major role in the degradation of crystalline cellulosic substrates. The combination of the converted Cel5A endoglucanase with the converted Cel48A exoglucanase also exhibited a measurable proximity effect for the most recalcitrant cellulosic substrate (Avicel). The length of the linker between the catalytic module and the dockerin had little, if any, effect on the activity. However, positioning of the dockerin on the opposite (C-terminal) side of the enzyme, consistent with the usual position of dockerins on most cellulosomal enzymes, resulted in an enhanced synergistic response. These results promote the development of more complex multienzyme designer cellulosomes, which may eventually be applied for improved degradation of plant cell wall biomass.In nature, some anaerobic cellulolytic bacteria produce cellulosomes, which are organized by the action of scaffoldin subunits that usually contain a single carbohydrate-binding module (CBM) and multiple cohesin modules (2, 7, 13, 14, 28, 36). This arrangement allows the integration of several dockerin-containing enzymes into a complex, which is then targeted to the cellulosic substrate by the common CBM. The cellulosomal enzymes then exhibit enhanced synergistic activity, presumably due to their spatial proximity and coordinated interaction. In contrast, the enzyme systems of aerobic bacteria and fungi comprise free (uncomplexed) enzymes, which differ from cellulosomal systems in that many of them contain their own CBM that delivers the individual catalytic module to the surface of the substrate (39, 41, 42).In previous work, we used the designer cellulosome concept (5) to construct unique minicellulosomes of defined content (16, 32, 33). In order to construct designer cellulosomes, chimeric scaffoldins have been prepared which contained two or more cohesins that matched the dockerins of the enzymes (native cellulosomal or dockerin-fused chimeras). Enzymes that contain dockerins that match the specificity of a scaffoldin-borne cohesin can then be selectively integrated into the designer cellulosome at a specified site. Cellulosomal enzymes containing either a native dockerin or a divergent dockerin can be inserted on different sites of a chimeric scaffoldin. Alternatively, a free, noncellulosomal enzyme can be included in designer cellulosomes by replacing its native CBM with a dockerin of choice. In some cases, designer cellulosomes displayed enhanced synergistic activity over the parallel free-enzyme system (15, 17). This increased activity was shown to be a function of both a substrate-targeting effect (contributed by the CBM on the chimeric scaffoldin) and the enzyme proximity effect, thus supporting the initial hypothesis.In recent studies, we have investigated the free-cellulase system of Thermobifida fusca for use in designer cellulosome systems. This aerobic thermophilic cellulolytic bacterium contains a limited set of six free cellulases, each composed of a catalytic module and a crystalline-cellulose binding family 2 CBM (CBM2) module on either the N or C terminus of the protein. T. fusca contains three endoglucanases (Cel5A, Cel6A, and Cel9B), two exocellulases (Cel6B and Cel48A), and one processive endoglucanase (Cel9A). Previously, we converted both family 6 cellulases and the family 48 exoglucanase from the free to the cellulosomal mode of action by replacing their native CBM2s with a dockerin module (11, 12). All three chimeric enzymes exhibited cellulose-degrading activity on both soluble and crystalline substrates. The results indicated that the family 48 exoglucanase appeared to be well adapted to the cellulosomal mode of action, whereas the family 6 exoglucanase is less appropriate for inclusion into cellulosomes. Indeed, family 48 cellulases have been found to be a major component in every native cellulosome thus far described, in contrast to the family 6 cellulases, which have been identified only in free-cellulase systems.An important feature of the free-acting fungal and bacterial cellulases is that they contain a linker segment, often rich in prolines and threonines, that connects the catalytic module to the CBM (37). The role of such flexible linkers is thought to ensure independent action of the adjacent functional modules, thus allowing progressive and efficient hydrolysis of cellulose by the catalytic modules (6, 9, 10, 20, 25-27, 34, 36, 38, 40). The present communication focuses on the effect of linker length and dockerin position (relative to the catalytic module) on enzymatic activity within a designer cellulosome. For this purpose we have employed the highly active family 5 endoglucanase Cel5A from T. fusca (21, 22, 29), which was converted to the cellulosomal mode by replacement of its CBM with a dockerin module. Chimeric dockerin derivatives were prepared on either the N or C terminus of the Cel5A catalytic module, separated by linker segments of different lengths. In most cases, binary designer cellulosomes, comprising the respective Cel5A chimera together with a Cel48A chimera, were shown to be more efficient on crystalline cellulosic substrates than the combination of the wild-type free enzymes.  相似文献   

11.

Background

The cellulosome is a multi-enzyme machine, which plays a key role in the breakdown of plant cell walls in many anaerobic cellulose-degrading microorganisms. Ruminococcus flavefaciens FD-1, a major fiber-degrading bacterium present in the gut of herbivores, has the most intricate cellulosomal organization thus far described. Cellulosome complexes are assembled through high-affinity cohesin-dockerin interactions. More than two-hundred dockerin-containing proteins have been identified in the R. flavefaciens genome, yet the reason for the expansion of these crucial cellulosomal components is yet unknown.

Methodology/Principal Findings

We have explored the full spectrum of 222 dockerin-containing proteins potentially involved in the assembly of cellulosome-like complexes of R. flavefaciens. Bioinformatic analysis of the various dockerin modules showed distinctive conservation patterns within their two Ca2+-binding repeats and their flanking regions. Thus, we established the conceptual framework for six major groups of dockerin types, according to their unique sequence features. Within this framework, the modular architecture of the parent proteins, some of which are multi-functional proteins, was evaluated together with their gene expression levels. Specific dockerin types were found to be associated with selected groups of functional components, such as carbohydrate-binding modules, numerous peptidases, and/or carbohydrate-active enzymes. In addition, members of other dockerin groups were linked to structural proteins, e.g., cohesin-containing proteins, belonging to the scaffoldins.

Conclusions/Significance

This report profiles the abundance and sequence diversity of the R. flavefaciens FD-1 dockerins, and provides the molecular basis for future understanding of the potential for a wide array of cohesin-dockerin specificities. Conserved differences between dockerins may be reflected in their stability, function or expression within the context of the parent protein, in response to their role in the rumen environment.  相似文献   

12.
Raut VV  Pandey SM  Sainis JK 《Annals of botany》2011,108(7):1235-1246

Background and Scope

In eukaryotes, chromatin remodelling complexes are shown to be responsible for nucleosome mobility, leading to increased accessibility of DNA for DNA binding proteins. Although the existence of such complexes in plants has been surmised mainly at the genetic level from bioinformatics studies and analysis of mutants, the biochemical existence of such complexes has remained unexplored.

Methods

Histone H1-depleted donor chromatin was prepared by micrococcal nuclease digestion of wheat nuclei and fractionation by exclusion chromatography. Nuclear extract was partially purified by cellulose phosphate ion exchange chromatography. Histone octamer trans-transfer activity was analysed using the synthetic nucleosome positioning sequence in the absence and presence of ATP and its analogues. ATPase activity was measured as 32Pi released using liquid scintillation counting.

Key Results

ATP-dependent histone octamer trans-transfer activity, partially purified from wheat nuclei using cellulose phosphate, showed ATP-dependent octamer displacement in trans from the H1-depleted native donor chromatin of wheat to the labelled synthetic nucleosome positioning sequence. It also showed nucleosome-dependent ATPase activity. Substitution of ATP by ATP analogues, namely ATPγS, AMP-PNP and ADP abolished the octamer trans-transfer, indicating the requirement of ATP hydrolysis for this activity.

Conclusions

ATP-dependent histone octamer transfer in trans is a recognized activity of chromatin remodelling complexes required for chromatin structure dynamics in non-plant species. Our results suggested that wheat nuclei also possess a typical chromatin remodelling activity, similar to that in other eukaryotes. This is the first report on chromatin remodelling activity in vitro from plants.  相似文献   

13.

Background

The animal gastrointestinal tract contains a complex community of microbes, whose composition ultimately reflects the co-evolution of microorganisms with their animal host and the diet adopted by the host. Although the importance of gut microbiota of humans has been well demonstrated, there is a paucity of research regarding non-human primates (NHPs), especially herbivorous NHPs.

Results

In this study, an analysis of 97,942 pyrosequencing reads generated from Rhinopithecus bieti fecal DNA extracts was performed to help better understanding of the microbial diversity and functional capacity of the R. bieti gut microbiome. The taxonomic analysis of the metagenomic reads indicated that R. bieti fecal microbiomes were dominated by Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria phyla. The comparative analysis of taxonomic classification revealed that the metagenome of R. bieti was characterized by an overrepresentation of bacteria of phylum Fibrobacteres and Spirochaetes as compared with other animals. Primary functional categories were associated mainly with protein, carbohydrates, amino acids, DNA and RNA metabolism, cofactors, cell wall and capsule and membrane transport. Comparing glycoside hydrolase profiles of R. bieti with those of other animal revealed that the R. bieti microbiome was most closely related to cow rumen.

Conclusions

Metagenomic and functional analysis demonstrated that R. bieti possesses a broad diversity of bacteria and numerous glycoside hydrolases responsible for lignocellulosic biomass degradation which might reflect the adaptations associated with a diet rich in fibrous matter. These results would contribute to the limited body of NHPs metagenome studies and provide a unique genetic resource of plant cell wall degrading microbial enzymes. However, future studies on the metagenome sequencing of R. bieti regarding the effects of age, genetics, diet and environment on the composition and activity of the metagenomes are required.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1378-7) contains supplementary material, which is available to authorized users.  相似文献   

14.

Background and Aims

The mobile carbon supply to different compartments of a tree is affected by climate, but its impact on cell-wall chemistry and mechanics remains unknown. To understand better the variability in root growth and biomechanics in mountain forests subjected to substrate mass movement, we investigated root chemical and mechanical properties of mature Abies georgei var. smithii (Smith fir) growing at different elevations on the Tibet–Qinghai Plateau.

Methods

Thin and fine roots (0·1–4·0 mm in diameter) were sampled at three different elevations (3480, 3900 and 4330 m, the last corresponding to the treeline). Tensile resistance of roots of different diameter classes was measured along with holocellulose and non-structural carbon (NSC) content.

Key Results

The mean force necessary to break roots in tension decreased significantly with increasing altitude and was attributed to a decrease in holocellulose content. Holocellulose was significantly lower in roots at the treeline (29·5 ± 1·3 %) compared with those at 3480 m (39·1 ± 1·0 %). Roots also differed significantly in NSC, with 35·6 ± 4·1 mg g−1 dry mass of mean total soluble sugars in roots at 3480 m and 18·8 ± 2·1 mg g−1 dry mass in roots at the treeline.

Conclusions

Root mechanical resistance, holocellulose and NSC content all decreased with increasing altitude. Holocellulose is made up principally of cellulose, the biosynthesis of which depends largely on NSC supply. Plants synthesize cellulose when conditions are optimal and NSC is not limiting. Thus, cellulose synthesis in the thin and fine roots measured in our study is probably not a priority in mature trees growing at very high altitudes, where climatic factors will be limiting for growth. Root NSC stocks at the treeline may be depleted through over-demand for carbon supply due to increased fine root production or winter root growth.  相似文献   

15.

Background

Spounavirinae viruses have received an increasing interest as tools for the control of harmful bacteria due to their relatively broad host range and strictly virulent phenotype.

Results

In this study, we collected and analyzed the complete genome sequences of 61 published phages, either ICTV-classified or candidate members of the Spounavirinae subfamily of the Myoviridae. A set of comparative analyses identified a distinct, recently proposed Bastille-like phage group within the Spounavirinae. More importantly, type 1 thymidylate synthase (TS1) and dihydrofolate reductase (DHFR) genes were shown to be unique for the members of the proposed Bastille-like phage group, and are suitable as molecular markers. We also show that the members of this group encode beta-lactamase and/or sporulation-related SpoIIIE homologs, possibly questioning their suitability as biocontrol agents.

Conclusions

We confirm the creation of a new genus—the “Bastille-like group”—in Spounavirinae, and propose that the presence of TS1- and DHFR-encoding genes could serve as signatures for the new Bastille-like group. In addition, the presence of metallo-beta-lactamase and/or SpoIIIE homologs in all members of Bastille-like group phages makes questionable their suitability for use in biocontrol.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1757-0) contains supplementary material, which is available to authorized users.  相似文献   

16.

Background and Aims

There is good evidence for deciduous trees that competition for carbohydrates from shoot growth accentuates early fruit abscission and reduces yield but the effect for evergreen trees is not well defined. Here, whole-tree tip-pruning at anthesis is used to examine the effect of post-pruning shoot development on fruit abscission in the evergreen subtropical tree macadamia (Macadamia integrifolia, M. integrifolia × tetraphylla). Partial-tree tip-pruning is also used to test the localization of the effect.

Methods

In the first experiment (2005/2006), all branches on trees were tip-pruned at anthesis, some trees were allowed to re-shoot (R treatment) and shoots were removed from others (NR treatment). Fruit set and stem total non-structural carbohydrates (TNSC) over time, and yield were measured. In the second experiment (2006/2007), upper branches of trees were tip-pruned at anthesis, some trees were allowed to re-shoot (R) and shoots were removed from others (NR). Fruit set and yield were measured separately for upper (pruned) and lower (unpruned) branches.

Key Results

In the first experiment, R trees set far fewer fruit and had lower yield than NR trees. TNSC fell and rose in all treatments but the decline in R trees occurred earlier than in NR trees and coincided with early shoot growth and the increase in fruit abscission relative to the other treatments. In the second experiment, fruit abscission on upper branches of R trees increased relative to the other treatments but there was little difference in fruit abscission between treatments on lower branches.

Conclusions

This study is the first to demonstrate an increase in fruit abscission in an evergreen tree in response to pruning. The effect appeared to be related to competition for carbohydrates between post-pruning shoot growth and fruit development and was local, with shoot growth on pruned branches having no effect on fruit abscission on unpruned branches.  相似文献   

17.

Background and Aims

A reduction in offspring fitness resulting from mating between neighbours is interpreted as biparental inbreeding depression. However, little is known about the relationship between the parents'' genetic relatedness and biparental inbreeding depression in their progeny in natural populations. This study assesses the effect of kinship between parents on the fitness of their progeny and the extent of spatial genetic structure in a natural population of Rhododendron brachycarpum.

Methods

Kinship coefficients between 11 858 pairs of plants among a natural population of 154 R. brachycarpum plants were estimated a priori using six microsatellite markers. Plants were genotyped, and pairs were selected from among 60 plants to vary the kinship from full-sib to unrelated. After a hand-pollination experiment among the 60 plants, offspring fitness was measured at the stages of seed maturation (i.e. ripening) under natural conditions, and seed germination and seedling survival under greenhouse conditions. In addition, spatial autocorrelation was used to assess the population''s genetic structure.

Key Results

Offspring fitness decreased significantly with increasing kinship between parents. However, the magnitude and timing of this effect differed among the life-cycle stages. Measures of inbreeding depression were 0·891 at seed maturation, 0·122 (but not significant) at seed germination and 0·506 at seedling survival. The local population spatial structure was significant, and the physical distance between parents mediated the level of inbreeding between them.

Conclusions

The level of inbreeding between individuals determines offspring fitness in R. brachycarpum, especially during seed maturation. Genetic relatedness between parents caused inbreeding depression in their progeny. Therefore, biparental inbreeding contributes little to reproduction and instead acts as a selection force that promotes outcrossing, as offspring of more distant (less related) parents survive better.  相似文献   

18.

Background

Evidence based on genomic sequences is urgently needed to confirm the phylogenetic relationship between Mesorhizobium strain MAFF303099 and M. huakuii. To define underlying causes for the rather striking difference in host specificity between M. huakuii strain 7653R and MAFF303099, several probable determinants also require comparison at the genomic level. An improved understanding of mobile genetic elements that can be integrated into the main chromosomes of Mesorhizobium to form genomic islands would enrich our knowledge of how genome dynamics may contribute to Mesorhizobium evolution in general.

Results

In this study, we sequenced the complete genome of 7653R and compared it with five other Mesorhizobium genomes. Genomes of 7653R and MAFF303099 were found to share a large set of orthologs and, most importantly, a conserved chromosomal backbone and even larger perfectly conserved synteny blocks. We also identified candidate molecular differences responsible for the different host specificities of these two strains. Finally, we reconstructed an ancestral Mesorhizobium genomic island that has evolved into diverse forms in different Mesorhizobium species.

Conclusions

Our ortholog and synteny analyses firmly establish MAFF303099 as a strain of M. huakuii. Differences in nodulation factors and secretion systems T3SS, T4SS, and T6SS may be responsible for the unique host specificities of 7653R and MAFF303099 strains. The plasmids of 7653R may have arisen by excision of the original genomic island from the 7653R chromosome.

Electronic supplementary material

The online version of this article (doi: 10.1186/1471-2164-15-440) contains supplementary material, which is available to authorized users.  相似文献   

19.

Background

Select cellulolytic bacteria produce multi-enzymatic cellulosome complexes that bind to the plant cell wall and catalyze its efficient degradation. The multi-modular interconnecting cellulosomal subunits comprise dockerin-containing enzymes that bind cohesively to cohesin-containing scaffoldins. The organization of the modules into functional polypeptides is achieved by intermodular linkers of different lengths and composition, which provide flexibility to the complex and determine its overall architecture.

Results

Using a synthetic biology approach, we systematically investigated the spatial organization of the scaffoldin subunit and its effect on cellulose hydrolysis by designing a combinatorial library of recombinant trivalent designer scaffoldins, which contain a carbohydrate-binding module (CBM) and 3 divergent cohesin modules. The positions of the individual modules were shuffled into 24 different arrangements of chimaeric scaffoldins. This basic set was further extended into three sub-sets for each arrangement with intermodular linkers ranging from zero (no linkers), 5 (short linkers) and native linkers of 27–35 amino acids (long linkers). Of the 72 possible scaffoldins, 56 were successfully cloned and 45 of them expressed, representing 14 full sets of chimaeric scaffoldins. The resultant 42-component scaffoldin library was used to assemble designer cellulosomes, comprising three model C. thermocellum cellulases. Activities were examined using Avicel as a pure microcrystalline cellulose substrate and pretreated cellulose-enriched wheat straw as a model substrate derived from a native source. All scaffoldin combinations yielded active trivalent designer cellulosome assemblies on both substrates that exceeded the levels of the free enzyme systems. A preferred modular arrangement for the trivalent designer scaffoldin was not observed for the three enzymes used in this study, indicating that they could be integrated at any position in the designer cellulosome without significant effect on cellulose-degrading activity. Designer cellulosomes assembled with the long-linker scaffoldins achieved higher levels of activity, compared to those assembled with short-and no-linker scaffoldins.

Conclusions

The results demonstrate the robustness of the cellulosome system. Long intermodular scaffoldin linkers are preferable, thus leading to enhanced degradation of cellulosic substrates, presumably due to the increased flexibility and spatial positioning of the attached enzymes in the complex. These findings provide a general basis for improved designer cellulosome systems as a platform for bioethanol production.
  相似文献   

20.
Momokawa N  Kadono Y  Kudoh H 《Annals of botany》2011,108(7):1299-1306

Background and Aims

For heterophyllous amphibious plants that experience fluctuating water levels, it is critical to control leaf development precisely in response to environmental cues that can serve as a quantitative index of water depth. Light quality can serve as such a cue because the ratio of red light relative to far-red light (R/FR) increases and blue-light intensity decreases with increasing water depth. Growth experiments were conducted to examine how R/FR and blue-light intensity alter leaf morphology of a heterophyllous amphibious plant, Rotala hippuris.

Methods

Using combinations of far red (730 nm), red (660 nm) and blue (470 nm) light-emitting diodes (LEDs), growth experiments were used to quantitatively evaluate the effects of the R/FR ratio and blue-light intensity on leaf morphology.

Key Results

Under the natural light regime in an outside growth garden, R. hippuris produced distinct leaves under submerged and aerial conditions. R/FR and blue-light intensity were found to markedly affect heterophyllous leaf formation. Higher and lower R/FR caused leaf characters more typical of submerged and aerial leaves, respectively, in both aerial and submerged conditions, in accordance with natural distribution of leaf types and light under water. High blue light caused a shift of trait values toward those of typical aerial leaves, and the response was most prominent under conditions of R/FR that were expected near the water surface.

Conclusions

R/FR and blue-light intensity provides quantitative cues for R. hippuris to detect water depth and determine the developmental fates of leaves, especially near the water surface. The utilization of these quantitative cues is expected to be important in habitats where plants experience water-level fluctuation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号