首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yang YS  Mitta G  Chavanieu A  Calas B  Sanchez JF  Roch P  Aumelas A 《Biochemistry》2000,39(47):14436-14447
MGD-1 is a 39-residue defensin-like peptide isolated from the edible Mediterranean mussel, Mytilus galloprovincialis. This peptide is characterized by the presence of four disulfide bonds. We report here its solid-phase synthesis and an easy way to improve the yield of the four native disulfide bonds. Synthetic and native MGD-1 display similar antibacterial activity, suggesting that the hydroxylation of Trp28 observed in native MGD-1 is not involved in the antimicrobial effect. The three-dimensional solution structure of MGD-1 has been established using (1)H NMR and mainly consists of a helical part (Asn7-Ser16) and two antiparallel beta-strands (Arg20-Cys25 and Cys33-Arg37), together giving rise to the common cystine-stabilized alpha-beta motif frequently observed in scorpion toxins. In MGD-1, the cystine-stabilized alpha-beta motif is stabilized by four disulfide bonds (Cys4-Cys25, Cys10-Cys33, Cys14-Cys35, and Cys21-Cys38), instead of by the three disulfide bonds commonly found in arthropod defensins. Except for the Cys21-Cys38 disulfide bond which is solvent-exposed, the three others belong to the particularly hydrophobic core of the highly constrained structure. Moreover, the C4-P5 amide bond in the cis conformation characterizes the MGD-1 structure. MGD-1 and insect defensin A possess similar bactericidal anti-Gram-positive activity, suggesting that the fourth disulfide bond of MGD-1 is not essential for the biological activity. In agreement with the general features of antibacterial peptides, the MGD-1 and defensin A structures display a typical distribution of positively charged and hydrophobic side chains. The positively charged residues of MGD-1 are located in three clusters. For these two defensin peptides isolated from insects and mollusks, it appears that the rather well conserved location of certain positively charged residues and of the large hydrophobic cluster are enough to generate the bactericidal potency and the Gram-positive specificity.  相似文献   

2.
M Gao  D Li  Y Hu  Y Zhang  Q Zou  DC Wang 《PloS one》2012,7(7):e41871
Tipα (TNF-α-inducing protein) from Helicobacter pylori is a carcinogenic effector. Studies on this protein revealed that a homodimer linked by a pair of intermolecular disulfide bridges (Cys25-Cys25 and Cys27-Cys27) was absolutely necessary for its biological functions. The activities of Tipα would be abolished when both disulfide bridges were disrupted. The crystal structures of Tipα reported to date, however, were based on inactive, monomeric mutants with their N-terminal, including residues Cys25 and Cys27, truncated. Here we report the crystal structure of H. pylori Tipα protein, TipαN25, at 2.2Å resolution, in which Cys25 and Cys27 form a pair of inter-chain disulfide bridges linking an active dimer. The disulfide bridges exhibit structural flexibility in the present structure. A series of structure-based mutagenesis, biochemical assays and molecular dynamic simulations on DNA-Tipα interactions reveal that Tipα utilizes the dimeric interface as the DNA-binding site and that residues His60, Arg77 and Arg81 located at the interface are crucial for DNA binding. Tipα could bind to one ssDNA, two ssDNA or one dsDNA in experiments, respectively, in the native or mutant states. The unique DNA-binding activities of Tipα indicate that the intrinsic flexible nature of disulfide bridges could endow certain elasticity to the Tipα dimer for its unique bioactivities. The results shed light on the possible structural mechanism for the functional performances of Tipα.  相似文献   

3.
Functional structure of the somatomedin B domain of vitronectin   总被引:1,自引:0,他引:1  
The N-terminal somatomedin B domain (SMB) of vitronectin binds PAI-1 and the urokinase receptor with high affinity and regulates tumor cell adhesion and migration. We have shown previously in the crystal structure of the PAI-1/SMB complex that SMB, a peptide of 51 residues, is folded as a compact cysteine knot of four pairs of crossed disulfide bonds. However, the physiological significance of this structure was questioned by other groups, who disputed the disulfide bonding shown in the crystal structure (Cys5-Cys21, Cys9-Cys39, Cys19-Cys32, Cys25-Cys31), notably claiming that the first disulfide is Cys5-Cys9 rather than the Cys5-Cys21 bonding shown in the structure. To test if the claimed Cys5-Cys9 bond does exist in the SMB domain of plasma vitronectin, we purified mouse and rat plasma vitronectin that have a Met (hence cleavable by cyanogen bromide) at residue 14, and also prepared recombinant human SMB variants from insect cells with residues Asn14 or Leu24 mutated to Met. HPLC and mass spectrometry analysis showed that, after cyanogen bromide digestion, all the fragments of the SMB derived from mouse or rat vitronectin or the recombinant SMB mutants are still linked together by disulfides, and the N-terminal peptide (residue 1-14 or 1-24) can only be released when the disulfide bonds are broken. This clearly demonstrates that Cys5 and Cys9 of SMB do not form a disulfide bond in vivo, and together with other structural evidence confirms that the only functional structure of the SMB domain of plasma vitronectin is that seen in its crystallographic complex with PAI-1.  相似文献   

4.
Arsenic (III) methyltransferase (AS3MT) is a cysteine (Cys)-rich enzyme that catalyzes the biomethylation of arsenic. To investigate how these crucial Cys residues promote catalysis, we used matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) to analyze Cys residues in recombinant human arsenic (III) methyltransferase (hAS3MT). We detected two disulfide bonds, Cys250-Cys32 and Cys368-Cys369, in hAS3MT. The Cys250-Cys32 disulfide bond was reduced by glutathione (GSH) or other disulfide bond reductants before the enzymatic methylation of arsenite (iAs3+). In addition to exposing residues around the active sites, cleavage of the Cys250-Cys32 pair modulated the conformation of hAS3MT. This adjustment may stabilize the binding of S-Adenosyl-L-methionine (AdoMet) and favor iAs3+ binding to hAS3MT. Additionally, we observed the intermediate of Cys250-S-adenosylhomocysteine (AdoHcy), suggesting that Cys250 is involved in the transmethylation. In recovery experiments, we confirmed that trivalent arsenicals were substrates for hAS3MT, methylation of arsenic occurred on the enzyme, and an intramolecular disulfide bond might be formed after iAs3+ was methylated to dimethylarsinous acid (DMA3+). In this work, we clarified both the functional roles of GSH and the crucial Cys residues in iAs3+ methylation catalyzed by hAS3MT.  相似文献   

5.
Growth and differentiation factor 5 (GDF5) is involved in many developmental processes such as chondrogenesis and joint and bone formation. A recombinant monomeric human GDF5 mutant rGDF5(C84A) is in vitro as potent as the dimeric native form, and clinical investigations of rGDF5(C84A) are in progress. Native homodimeric GDF5 belongs to the transforming growth factor β (TGF-β) superfamily; each monomer contains a cystine knot formed by three intrachain disulfide bridges, and the monomers are connected via an interchain disulfide bridge. The disulfide bridge pattern of recombinant homodimeric rGDF5 was recently elucidated by X-ray diffraction. A combination of proteolytic degradation with thermolysin, separation of the generated fragments by reverse-phase high-performance liquid chromatography (RP–HPLC), and subsequent analyses of the disulfide-linked peptides by electrospray–mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight (MALDI–TOF) mass spectrometry, amino acid analysis, and Edman degradation led to the unambiguous identification of the disulfide bridge pattern of the monomeric mutant rGDF5(C84A) and of the homodimeric rGDF5 in solution. The cystine knot of homodimeric rGDF5 exhibits the pattern Cys1-Cys5, Cys2-Cys6, and Cys3-Cys7 (three intrachain disulfide bonds), and the monomers are connected by a single interchain disulfide bridge (Cys4-Cys4) in accordance with other members of the TGF-β superfamily. The monomeric mutant rGDF5(C84A) exhibits the same cystine knot pattern as homodimeric rGDF5.  相似文献   

6.
Rv2466c is a key oxidoreductase that mediates the reductive activation of TP053, a thienopyrimidine derivative that kills replicating and non-replicating Mycobacterium tuberculosis, but whose mode of action remains enigmatic. Rv2466c is a homodimer in which each subunit displays a modular architecture comprising a canonical thioredoxin-fold with a Cys19-Pro20-Trp21-Cys22 motif, and an insertion consisting of a four α-helical bundle and a short α-helical hairpin. Strong evidence is provided for dramatic conformational changes during the Rv2466c redox cycle, which are essential for TP053 activity. Strikingly, a new crystal structure of the reduced form of Rv2466c revealed the binding of a C-terminal extension in α-helical conformation to a pocket next to the active site cysteine pair at the interface between the thioredoxin domain and the helical insertion domain. The ab initio low-resolution envelopes obtained from small angle x-ray scattering showed that the fully reduced form of Rv2466c adopts a “closed” compact conformation in solution, similar to that observed in the crystal structure. In contrast, the oxidized form of Rv2466c displays an “open” conformation, where tertiary structural changes in the α-helical subdomain suffice to account for the observed conformational transitions. Altogether our structural, biochemical, and biophysical data strongly support a model in which the formation of the catalytic disulfide bond upon TP053 reduction triggers local structural changes that open the substrate binding site of Rv2466c allowing the release of the activated, reduced form of TP053. Our studies suggest that similar structural changes might have a functional role in other members of the thioredoxin-fold superfamily.  相似文献   

7.
8.
The α-proteobacterium Wolbachia pipientis infects more than 65% of insect species worldwide and manipulates the host reproductive machinery to enable its own survival. It can live in mutualistic relationships with hosts that cause human disease, including mosquitoes that carry the Dengue virus. Like many other bacteria, Wolbachia contains disulfide bond forming (Dsb) proteins that introduce disulfide bonds into secreted effector proteins. The genome of the Wolbachia strain wMel encodes two DsbA-like proteins sharing just 21% sequence identity to each other, α-DsbA1 and α-DsbA2, and an integral membrane protein, α-DsbB. α-DsbA1 and α-DsbA2 both have a Cys-X-X-Cys active site that, by analogy with Escherichia coli DsbA, would need to be oxidized to the disulfide form to serve as a disulfide bond donor toward substrate proteins. Here we show that the integral membrane protein α-DsbB oxidizes α-DsbA1, but not α-DsbA2. The interaction between α-DsbA1 and α-DsbB is very specific, involving four essential cysteines located in the two periplasmic loops of α-DsbB. In the electron flow cascade, oxidation of α-DsbA1 by α-DsbB is initiated by an oxidizing quinone cofactor that interacts with the cysteine pair in the first periplasmic loop. Oxidizing power is transferred to the second cysteine pair, which directly interacts with α-DsbA1. This reaction is inhibited by a non-catalytic disulfide present in α-DsbA1, conserved in other α-proteobacterial DsbAs but not in γ-proteobacterial DsbAs. This is the first characterization of the integral membrane protein α-DsbB from Wolbachia and reveals that the non-catalytic cysteines of α-DsbA1 regulate the redox relay system in cooperation with α-DsbB.  相似文献   

9.
Aldose reductase (ALR2) is susceptible to oxidative inactivation by copper ion. The mechanism underlying the reversible modification of ALR2 was studied by mass spectrometry, circular dichroism, and molecular modeling approaches on the enzyme purified from bovine lens and on wild type and mutant recombinant forms of the human placental and rat lens ALR2. Two equivalents of copper ion were required to inactivate ALR2: one remained weakly bound to the oxidized protein whereas the other was strongly retained by the inactive enzyme. Cys(303) appeared to be the essential residue for enzyme inactivation, because the human C303S mutant was the only enzyme form tested that was not inactivated by copper treatment. The final products of human and bovine ALR2 oxidation contained the intramolecular disulfide bond Cys(298)-Cys(303). However, a Cys(80)-Cys(303) disulfide could also be formed. Evidence for an intramolecular rearrangement of the Cys(80)-Cys(303) disulfide to the more stable product Cys(298)-Cys(303) is provided. Molecular modeling of the holoenzyme supports the observed copper sequestration as well as the generation of the Cys(80)-Cys(303) disulfide. However, no evidence of conditions favoring the formation of the Cys(298)-Cys(303) disulfide was observed. Our proposal is that the generation of the Cys(298)-Cys(303) disulfide, either directly or by rearrangement of the Cys(80)-Cys(303) disulfide, may be induced by the release of the cofactor from ALR2 undergoing oxidation. The occurrence of a less interactive site for the cofactor would also provide the rationale for the lack of activity of the disulfide enzyme forms.  相似文献   

10.
Large-conductance voltage- and calcium-activated potassium (BK) channels contain four pore-forming α subunits and four modulatory β subunits. From the extents of disulfide cross-linking in channels on the cell surface between cysteine (Cys) substituted for residues in the first turns in the membrane of the S0 transmembrane (TM) helix, unique to BK α, and of the voltage-sensing domain TM helices S1–S4, we infer that S0 is next to S3 and S4, but not to S1 and S2. Furthermore, of the two β1 TM helices, TM2 is next to S0, and TM1 is next to TM2. Coexpression of α with two substituted Cys’s, one in S0 and one in S2, and β1 also with two substituted Cys’s, one in TM1 and one in TM2, resulted in two αs cross-linked by one β. Thus, each β lies between and can interact with the voltage-sensing domains of two adjacent α subunits.  相似文献   

11.
Human defensins play multiple roles in innate immunity including direct antimicrobial killing and immunomodulatory activity. They have three disulfide bridges which contribute to the stability of three anti-parallel β-strands. The exact role of disulfide bridges and canonical β-structure in the antimicrobial action is not yet fully understood. In this study, we have explored the antimicrobial activity of human β-defensin 4 (HBD4) analogs that differ in the number and connectivity of disulfide bridges. The cysteine framework was similar to the disulfide bridges present in μ-conotoxins, an unrelated class of peptide toxins. All the analogs possessed enhanced antimicrobial potency as compared to native HBD4. Among the analogs, the single disulfide bridged peptide showed maximum potency. However, there were no marked differences in the secondary structure of the analogs. Subtle variations were observed in the localization and membrane interaction of the analogs with bacteria and Candida albicans, suggesting a role for disulfide bridges in modulating their antimicrobial action. All analogs accumulated in the cytosol where they can bind to anionic molecules such as nucleic acids which would affect several cellular processes leading to cell death. Our study strongly suggests that native disulfide bridges or the canonical β-strands in defensins have not evolved for maximal activity but they play important roles in determining their antimicrobial potency.  相似文献   

12.
Large-conductance voltage- and Ca2+-gated K+ channels are negative-feedback regulators of excitability in many cell types. They are complexes of α subunits and of one of four types of modulatory β subunits. These have intracellular N- and C-terminal tails and two transmembrane (TM) helices, TM1 and TM2, connected by an ∼100-residue extracellular loop. Based on endogenous disulfide formation between engineered cysteines (Cys), we found that in β2 and β3, as in β1 and β4, TM1 is closest to αS1 and αS2 and TM2 is closest to αS0. Mouse β3 (mβ3) has seven Cys in its loop, one of which is free, and this Cys readily forms disulfides with Cys substituted in the extracellular flanks of each of αS0–αS6. We identified by elimination mβ3-loop Cys152 as the only free Cys. We inferred the disulfide-bonding pattern of the other six Cys. Using directed proteolysis and fragment sizing, we determined this pattern first among the four loop Cys in β1. These are conserved in β2–β4, which have four additional Cys (eight in total), except that mβ3 has one fewer. In β1, disulfides form between Cys at aligned positions 1 and 8 and between Cys at aligned positions 5 and 6. In mβ3, the free Cys is at position 7; position 2 lacks a Cys present in all other β2–β4; and the disulfide pattern is 1–8, 3–4, and 5–6. Presumably, Cys 2 cross-links to Cys 7 in all other β2–β4. Cross-linking of mβ3 Cys152 to Cys substituted in the flanks of αS0–S5 attenuated the protection against iberiotoxin (IbTX); cross-linking of Cys152 to K296C in the αS6 flank and close to the pore enhanced protection against IbTX. In no case was N-type inactivation by the N-terminal tail of mβ3 perturbed. Although the mβ3 loop can move, its position with Cys152 near αK296, in which it blocks IbTX binding, is likely favored.  相似文献   

13.
家蝇防御素基因的cDNA克隆及序列分析   总被引:12,自引:0,他引:12  
Defensin is a kind of cationic.inducible antimicrobial peptide found in a large range of living organisms that contributes to host defense by disrupting the cytoplasmic membrane of microorganisms.with their broad antimicrobial spectrum and strong pharmaceutical effects.antimicrobial peptides,including defensins,represent a source of novel antibiotic agents.A novel full-length 430 base pairs cDNA of an insect defensin was cloned using polymerase chain reaction (PCR) from the cDnA library of houseflies(Musca domestica) that had been challenged by E.coli and staphylococcus taincd an NH2-terminal signal sequence(1-22)followed by a propeptide and the mature peptide(53-92),The sequence identity with other insect defensin is between 51% and 73%.The mature peptide,with a predicted molecular weight of 4.0kDa,and pI of 8.69,has 1 negative charged amino acid and 4 positice ones,the putative housefly defensin is characterized by 6 invariant cysteine residues forming 3 disulfide bonds,Cys1-Cys4,Cys2-Cys5 and Cys3-Cys6,These results suggest that the novel full-length cDNA of the defensin gene.Denominated Mdde,has been successfully cloned from houseflies.  相似文献   

14.
Mia40-catalyzed disulfide formation drives the import of many proteins into the mitochondria. Here we characterize the oxidative folding of Cox19, a twin CX9C Mia40 substrate. Cox19 oxidation is extremely slow, explaining the persistence of import-competent reduced species in the cytosol. Mia40 accelerates Cox19 folding through the specific recognition of the third Cys in the second helical CX9C motif and the subsequent oxidation of the inner disulfide bond. This renders a native-like intermediate that oxidizes in a slow uncatalyzed reaction into native Cox19. The same intermediate dominates the pathway in the absence of Mia40, and chemical induction of an α-helical structure by trifluoroethanol suffices to accelerate productive folding and mimic the Mia40 folding template mechanism. The Mia40 role is to funnel a rough folding landscape, skipping the accumulation of kinetic traps, providing a rationale for the promiscuity of Mia40.  相似文献   

15.
We have identified a 101-amino-acid polypeptide derived from the sequence of the IIA binding site of human albumin. The polypeptide contains residues that make contact with IIA ligands in the parent protein, and eight cysteine residues to form disulfide bridges, that stabilize the polypeptide structure. Seventy-four amino acids are located in six α-helical regions, while the remaining thirty-seven amino acids form six connecting coil/loop regions. A soluble GST fusion protein was expressed in E. coli in yields as high as 4 mg/l. This protein retains the IIA fragment’s capacity to bind typical ligands such as warfarin and efavirenz and other albumin’s functional properties such as aldolase activity and the ability to direct the stereochemical outcome of a diketone reduction. This newly cloned polypeptide thus represents a valuable starting point for the construction of libraries of binders and catalysts with improved proficiency.  相似文献   

16.
Human acid sphingomyelinase (haSMase, EC 3.1.4.12) catalyzes the lysosomal degradation of sphingomyelin to ceramide and phosphorylcholine. An inherited haSMase deficiency leads to Niemann-Pick disease, a severe sphingolipid storage disorder. The enzyme was purified and cloned over 10 years ago. Since then, only a few structural properties of haSMase have been elucidated. For understanding of its complex functions including its role in certain signaling and apoptosis events, complete structural information about the enzyme is necessary. Here, the identification of the disulfide bond pattern of haSMase is reported for the first time. Functional recombinant enzyme expressed in SF21 cells using the baculovirus expression system was purified and digested by trypsin. MALDI-MS analysis of the resulting peptides revealed the four disulfide bonds Cys120-Cys131, Cys385-Cys431, Cys584-Cys588 and Cys594-Cys607. Two additional disulfide bonds (Cys221-Cys226 and Cys227-Cys250) which were not directly accessible by tryptic cleavage, were identified by a combination of a method of partial reduction and MALDI-PSD analysis. In the sphingolipid activator protein (SAP)-homologous N-terminal domain of haSMase, one disulfide bond was assigned as Cys120-Cys131. The existence of two additional disulfide bridges in this region was proved, as was expected for the known disulfide bond pattern of SAP-type domains. These results support the hypothesis that haSMase possesses an intramolecular SAP-type activator domain as predicted by sequence comparison [Ponting, C.P. (1994) Protein Sci., 3, 359-361]. An additional analysis of haSMase isolated from human placenta shows that the recombinant and the native human protein possess an identical disulfide structure.  相似文献   

17.
Tissue factor (TF) is a transmembrane glycoprotein that plays distinct roles in the initiation of extrinsic coagulation cascade and thrombosis. TF contains two disulfide bonds, one each in the N-terminal and C-terminal extracellular domains. The C-domain disulfide, Cys186-Cys209, has a ?RHStaple configuration in crystal structures, suggesting that this disulfide carries high pre-stress. The redox state of this disulfide has been proposed to regulate TF encryption/decryption. Ablating the N-domain Cys49-Cys57 disulfide bond was found to increase the redox potential of the Cys186-Cys209 bond, implying an allosteric communication between the domains. Using molecular dynamics simulations, we observed that the Cys186-Cys209 disulfide bond retained the ?RHStaple configuration, whereas the Cys49-Cys57 disulfide bond fluctuated widely. The Cys186-Cys209 bond featured the typical ?RHStaple disulfide properties, such as a longer S-S bond length, larger C-S-S angles, and higher bonded prestress, in comparison to the Cys49-Cys57 bond. Force distribution analysis was used to sense the subtle structural changes upon ablating the disulfide bonds, and allowed us to identify a one-way allosteric communication mechanism from the N-terminal to the C-terminal domain. We propose a force propagation pathway using a shortest-pathway algorithm, which we suggest is a useful method for searching allosteric signal transduction pathways in proteins. As a possible explanation for the pathway being one-way, we identified a pronounced lower degree of conformational fluctuation, or effectively higher stiffness, in the N-terminal domain. Thus, the changes of the rigid domain (N-terminal domain) can induce mechanical force propagation to the soft domain (C-terminal domain), but not vice versa.  相似文献   

18.
The protease inhibitor α2-macroglobulin (A2M) is a member of the ancient α2-macroglobulin superfamily (A2MF), which also includes structurally related proteins, such as complement factor C3. A2M and other A2MF proteins undergo an extensive conformational change upon cleavage of their bait region by proteases. However, the mechanism whereby cleavage triggers the change has not yet been determined. We have previously shown that A2M remains functional after completely replacing its bait region with glycine and serine residues. Here, we use this tabula rasa bait region to investigate several hypotheses for the triggering mechanism. When tabula rasa bait regions containing disulfide loops were elongated by reducing the disulfides, we found that A2M remained in its native conformation. In addition, cleavage within a disulfide loop did not trigger the conformational change until after the disulfide was reduced, indicating that the introduction of discontinuity into the bait region is essential to the trigger. Previously, A2MF structures have shown that the C-terminal end of the bait region (a.k.a. the N-terminal region of the truncated α chain) threads through a central channel in native A2MF proteins. Bait region cleavage abolishes this plug-in-channel arrangement, as the bait region retracts from the channel and the channel itself collapses. We found that mutagenesis of conserved plug-in-channel residues disrupted the formation of native A2M. These results provide experimental evidence for a structural hypothesis in which retraction of the bait region from this channel following cleavage and the channel’s subsequent collapse triggers the conformational change of A2M and other A2MF proteins.  相似文献   

19.
The membrane-associated flavoprotein Ero1p promotes disulfide bond formation in the endoplasmic reticulum (ER) by selectively oxidizing the soluble oxidoreductase protein disulfide isomerase (Pdi1p), which in turn can directly oxidize secretory proteins. Two redox-active disulfide bonds are essential for Ero1p oxidase activity: Cys100-Cys105 and Cys352-Cys355. Genetic and structural data indicate a disulfide bond is transferred from Cys100-Cys105 directly to Pdi1p, whereas a Cys352-Cys355 disulfide bond is used to reoxidize the reduced Cys100-Cys105 pair through an internal thiol-transfer reaction. Electron transfer from Cys352-Cys355 to molecular oxygen, by way of a flavin cofactor, maintains Cys352-Cys355 in an oxidized form. Herein, we identify a mixed disulfide species that confirms the Ero1p intercysteine thiol-transfer relay in vivo and identify Cys105 and Cys352 as the cysteines that mediate thiol-disulfide exchange. Moreover, we describe Ero1p mutants that have the surprising ability to oxidize substrates in the absence of Cys100-Cys105. We show the oxidase activity of these mutants results from structural changes in Ero1p that allow substrates increased access to Cys352-Cys355, which are normally buried beneath the protein surface. The altered activity of these Ero1p mutants toward selected substrates leads us to propose the catalytic mechanism involving transfer between cysteine pairs evolved to impart substrate specificity to Ero1p.  相似文献   

20.
Isocitrate dehydrogenase kinase/phosphatase (IDHK/P) is a homodimeric enzyme which controls the oxidative metabolism of Escherichia coli, and exibits a high intrinsic ATPase activity. When subjected to electrophoresis under nonreducing conditions, the purified enzyme migrates partially as a dimer. The proportion of the dimer over the monomer is greatly increased by treatment with cupric 1,10 phenanthrolinate or 5,5'-dithio-bis(2-nitrobenzoic acid), and fully reversed by dithiothreitol, indicating that covalent dimerization is produced by a disulfide bond. To identify the residue(s) involved in this intermolecular disulfide-bond, each of the eight cysteines of the enzyme was individually mutated into a serine. It was found that, under nonreducing conditions, the electrophoretic patterns of all corresponding mutants are identical to that of the wild-type, except for the Cys67-->Ser which migrates exclusively as a monomer and for the Cys108-->Ser which migrates preferentially as a dimer. Furthermore, in contrast to the wild-type enzyme and all the other mutants, the Cys67-->Ser mutant still migrates as a monomer after treatment with cupric 1,10 phenanthrolinate. This result indicates that the intermolecular disulfide bond involves only Cys67 in each IDHK/P wild-type monomer. This was further supported by mass spectrum analysis of the tryptic peptides derived from either the cupric 1,10 phenanthrolinate-treated wild-type enzyme or the native Cys108-->Ser mutant, which show that they both contain a Cys67-Cys67 disulfide bond. Moreover, both the cupric 1,10 phenanthrolinate-treated wild-type enzyme and the native Cys108-->Ser mutant contain another disulfide bond between Cys356 and Cys480. Previous results have shown that this additional Cys356-Cys480 disulfide bond is intramolecular [Oudot, C., Jault, J.-M., Jaquinod, M., Negre, D., Prost, J.-F., Cozzone, A.J. & Cortay, J.-C. (1998) Eur. J. Biochem. 258, 579-585].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号