首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
2.
Dry powder inhalers (DPIs) are an important and increasingly investigated method of modern therapy for a growing number of respiratory diseases. DPIs are a promising option for certain patient populations, and may help to overcome several limitations that are associated with other types of inhalation delivery systems (e.g., accuracy and reproducibility of the dose delivered, compliance and adherence issues, or environmental aspects). Today, more than 20 different dry powder inhalers are on the market to deliver active pharmaceutical ingredients (APIs) for local and/or systemic therapy. Depending on the mechanism of deagglomeration, aerosolization, dose metering accuracy, and the interpatient variability, dry powder inhalers demonstrate varying performance levels. During development, manufacturers focus on improving aspects characteristic of their specific DPI devices, depending on the intended type of application and any particular requirements associated with it. With the wide variety of applications related to specific APIs, there exists a range of different devices with distinct features. In addition to the routinely used multi-use DPIs, several single-use disposable devices are under development or already approved. The recent introduction of disposable devices will expand the range of possible applications for use by including agents such as vaccines, analgesics, or even rescue medications. This review article discusses the performance and advantages of recently approved dry powder inhalers as well as disposable single-use inhalers that are currently under development.KEY WORDS: disposable, dry powder inhaler, particle deagglomeration, vaccination  相似文献   

3.
Delivery of therapeutic agents to enhance arteriovenous fistula (AVF) maturation can be administered either via intraluminal or external routes. The simple murine AVF model was combined with intraluminal administration of drug solution to the venous endothelium at the same time as fistula creation. Technical aspects of this model are discussed. Under general anesthesia, an abdominal incision is made and the aorta and inferior vena cava (IVC) are exposed. The infra-renal aorta and IVC are dissected for clamping. After proximal and distal clamping, the puncture site is exposed and a 25 G needle is used to puncture both walls of the aorta and into the IVC. Immediately after the puncture, a reporter gene-expressing viral vector was infused in the IVC via the same needle, followed by 15 min of incubation. The intraluminal administration method enabled more robust viral gene delivery to the venous endothelium compared to administration by the external route. This novel method of delivery will facilitate studies that explore the role of the endothelium in AVF maturation and enable intraluminal drug delivery at the time of surgical operation.  相似文献   

4.
外泌体(exosomes)是细胞分泌的囊泡,在细胞与细胞之间通信中发挥重要作用。由于其固有的长距离通信能力和出色的生物相容性而具有很大的潜力作为药物递送载体,尤其适合递送蛋白质、核酸、基因治疗剂等治疗药物。许多研究表明外泌体可以有效地将许多不同种类的货物递送至靶细胞,因此,它们常被作为药物载体用于治疗。对外泌体作为药物递送系统中面临的外泌体分离,药物装载和靶向治疗应用的进展与挑战作一介绍,以期更好为外泌体药物递送系统开发提供新思路。  相似文献   

5.
外泌体(exosomes)是细胞分泌的囊泡,在细胞与细胞之间通信中发挥重要作用。由于其固有的长距离通信能力和出色的生物相容性而具有很大的潜力作为药物递送载体,尤其适合递送蛋白质、核酸、基因治疗剂等治疗药物。许多研究表明外泌体可以有效地将许多不同种类的货物递送至靶细胞,因此,它们常被作为药物载体用于治疗。对外泌体作为药物递送系统中面临的外泌体分离,药物装载和靶向治疗应用的进展与挑战作一介绍,以期更好为外泌体药物递送系统开发提供新思路。  相似文献   

6.
7.
Central nervous system (CNS) diseases are difficult to treat because of the blood-brain barrier (BBB), which prevents most drugs from entering into the brain. Intranasal (IN) administration is a promising approach for drug delivery to the brain, bypassing the BBB; however, its application has been restricted to particularly potent substances and it does not offer localized delivery to specific brain sites. Focused ultrasound (FUS) in combination with microbubbles can deliver drugs to the brain at targeted locations. The present study proposed to combine these two different platform techniques (FUS+IN) for enhancing the delivery efficiency of intranasally administered drugs at a targeted location. After IN administration of 40 kDa fluorescently-labeled dextran as the model drug, FUS targeted at one region within the caudate putamen of mouse brains was applied in the presence of systemically administered microbubbles. To compare with the conventional FUS technique, in which intravenous (IV) drug injection is employed, FUS was also applied after IV injection of the same amount of dextran in another group of mice. Dextran delivery outcomes were evaluated using fluorescence imaging of brain slices. The results showed that FUS+IN enhanced drug delivery within the targeted region compared with that achieved by IN only. Despite the fact that the IN route has limited drug absorption across the nasal mucosa, the delivery efficiency of FUS+IN was not significantly different from that of FUS+IV. As a new drug delivery platform, the FUS+IN technique is potentially useful for treating CNS diseases.  相似文献   

8.
Russian Journal of Bioorganic Chemistry - Currently, brain tumors are becoming more common and their clinical picture is aggravated by serious complications. According to the statistics of the...  相似文献   

9.
In recent years, there has been a considerable interest in the development of novel drug delivery systems using nanotechnology. Nanoparticles represent a promising drug delivery system of controlled and targeted release. In this context, nanosuspensions will be effective in increasing the solubility and bioavailability of poorly soluble drugs. This review focuses on advantages, method of preparation, physical characteristics, and evaluation of drug nanosuspensions.  相似文献   

10.
Targeted delivery of drugs to tumors represents a significant advance in cancer diagnosis and therapy. Therefore, development of novel tumor-specific ligands or pharmaceutical nanocarriers is highly desirable. In this study, we utilized phage display to identify a new targeting peptide, SP90, which specifically binds to breast cancer cells, and recognizes tumor tissues from breast cancer patients. We used confocal and electron microscopy to reveal that conjugation of SP90 with liposomes enables efficient delivery of drugs into cancer cells through endocytosis. Furthermore, in vivo fluorescent imaging demonstrated that SP90-conjugated quantum dots possess tumor-targeting properties. In tumor xenograft and orthotopic models, SP90-conjugated liposomal doxorubicin was found to improve the therapeutic index of the chemotherapeutic drug by selectively increasing its accumulation in tumors. We conclude that the targeting peptide SP90 has significant potential in improving the clinical benefits of chemotherapy in the treatment and the diagnosis of breast cancer.  相似文献   

11.
Herein we describe a protocol to deliver various reagents to the mouse mammary gland via intraductal injections. Localized drug delivery and knock-down of genes within the mammary epithelium has been difficult to achieve due to the lack of appropriate targeting molecules that are independent of developmental stages such as pregnancy and lactation. Herein, we describe a technique for localized delivery of reagents to the mammary gland at any stage in adulthood via intraductal injection into the nipples of mice. The injections can be performed on live mice, under anesthesia, and allow for a non-invasive and localized drug delivery to the mammary gland. Furthermore, the injections can be repeated over several months without damaging the nipple. Vital dyes such as Evans Blue are very helpful to learn the technique. Upon intraductal injection of the blue dye, the entire ductal tree becomes visible to the eye. Furthermore, fluorescently labeled reagents also allow for visualization and distribution within the mammary gland. This technique is adaptable for a variety of compounds including siRNA, chemotherapeutic agents, and small molecules.  相似文献   

12.
13.
Abstract

The folate receptor has been identified as a marker for ovarian carcinomas and is also up-regulated in many other types of cancer. Folate-conjugation has been successfully applied in the tumor cell-selective targeting of liposomes. A long polyethyleneglycol (PEG) spacer between the targeting ligand (i.e. folic acid) and the liposome surface is required for receptor recognition. Ligand binding is compatible with the PEG-coating of the liposomes needed for prolonged systemic circulation. Folate-targeted liposomes have been shown to enhance the in vitro cytotoxicity of liposome-entrapped doxorubicin and antisense oligodeoxynucleotides to receptor-bearing tumor cells. Folate, as a targeting ligand, offers unique advantages over immunoliposomes, i.e., easy liposomal incorporation, low cost, high receptor affinity and tumor specificity, extended stability, and potential lack of immunogenicity.  相似文献   

14.
The influence of electroporation on the Photofrin uptake and distribution was evaluated in the breast adenocarcinoma cells (MCF-7) and normal Chinese hamster ovary cells (CHO) lacking voltage-dependent channels in vitro. Photofrin was used at a concentration of 5 and 25 μM. The uptake of Photofrin was assessed using flow cytometry and fluorescence microscopy methods. Cells viability was evaluated with crystal violet assay. Our results indicated that electropermeabilization of cells, in the presence of Photofrin, increased the uptake of the photosensitizer. Even at the lowest electric field intensity (700 V/cm) Photofrin transport was enhanced. Flow cytometry results for MCF-7 cells revealed ~1.7 times stronger fluorescence emission intensity for cells exposed to Photofrin and electric field of 700 V/cm than cells treated with Photofrin alone. Photofrin was effective only when irradiated with blue light. Our studies on combination of photodynamic reaction with electroporation suggested improved effectiveness of the treatment and showed intracellular distribution of Photofrin. This approach may be attractive for cancer treatment as enhanced cellular uptake of Photofrin in MCF-7 cells can help to reduce effective dose of the photosensitizer and exposure time in this type of cancer, diminishing side effects of the therapy.  相似文献   

15.
Artesunate (ART)—a well-known hydrophobic anti-malarial agent was incorporated in a polymer-lipid hybrid nanocolloidal system for anti-cancer therapeutic. The lipid negatively charged nanoemulsion was formulated by modified hot homogenization method then covered with positively charged chitosan via electrostatic interaction to obtain chitosan-coated lipid nanocapsule (ART-CLN). Physical properties of the system were characterized in terms of size, charge, morphology, drug loading capacity, and physical state. In addition, anti-cancer activities were confirmed by conducting MTT assay for ART and ART-CLN on different cancer cell lines. Obtained ART-CLN after coating chitosan revealed positive charge (13.2 ± 0.87 mV), small particle size (160.9 ± 3.5 nm), and spherical shape. High drug entrapment efficiency (95.49 ± 1.13%) and sustained release pattern were observed. Moreover, the good cellular uptake was recorded by flow cytometry as well as confocal image. Finally, ART-CLN exhibited stronger anti-cancer activity than free ART on breast cancer cell lines (MCF-7, MDA-MB-231). These results suggested that by loading ART into lipid core of polymer-lipid hybrid carrier, the activity and physical stability of ART can be significantly increased for cancer chemotherapy.KEY WORDS: anti-cancer, artesunate, breast cancer, chitosan, lipid nanoparticles  相似文献   

16.
转铁蛋白受体及其在药物运输中的作用   总被引:3,自引:0,他引:3  
血脑屏障的存在阻止了中枢神经系统疾病许多潜在治疗药物的通过.近年来主要利用脑毛细血管内皮细胞膜中的转运蛋白,如转铁蛋白受体、胰岛素受体等,将外源药物与这些受体的特异性抗体相连,通过受体介导的内吞作用将药物转运到脑组织中.转铁蛋白受体在抗癌药物定向运输及恶性肿瘤细胞基因治疗中的研究已经处于临床阶段.  相似文献   

17.
跨血脑屏障药物转运的研究进展   总被引:4,自引:0,他引:4  
血脑屏障(Blood-brain barrier,BBB)的存在成为人们治疗中枢神经系统疾病(Central nervous system,CNS)所面临的一道难题,因为基本上100%的大分子药物及大于98%的小分子药物均无法穿过血脑屏障.因此,如何使CNS药物跨越血脑屏障从血液进入脑内且发挥药效成为解决难题的关键所在.如今一些借助内源性BBB运载体使药物转运入脑的技术发展起来.并处于实验研究和临床试验阶段,例如借助载体介导的转运系统、受体介导的转运系统的药物治疗策略,以及纳米技术的运用等,都有着良好的应用前景.这些新发现及新技术将为跨血脑屏障药物转运的研究提供新思路.并有望实现对CNS疾病患者的成功治疗.  相似文献   

18.
Microparticulate drug delivery systems have shown a great interest in the pharmaceutical area. They allow the increase of drug therapeutic efficacy and the reduction of side effects. In this context, microsponges represent a new model of porous polymer microspheres, which allow the entrapment of a wide range of active agents. During the development, it is necessary the characterization of the system and among of the most important tests are the release and permeation profile analysis. They can demonstrate the behavior of drug in a specific site with a particular application condition and are related to therapeutic efficacy. Therefore, this review provides an overview of drug delivery profile from microsponges. Methods for determination of in vitro release and ex vivo permeation studies are detailed. Examples of drug delivery from microsponges administered in different sites are also discussed with aim to provide an understanding of the use of this strategy to modify the drug delivery.  相似文献   

19.
The purpose of this study was to develop and optimize formulations of mucoadhesive bilayered buccal tablets of pravastatin sodium using carrageenan gum as the base matrix. The tablets were prepared by direct compression method. Polyvinyl pyrrolidone (PVP) K 30, Pluronic® F 127, and magnesium oxide were used to improve tablet properties. Magnesium stearate, talc, and lactose were used to aid the compression of tablets. The tablets were found to have good appearance, uniform thickness, diameter, weight, pH, and drug content. A 23 full factorial design was employed to study the effect of independent variables viz. levels of carrageenan gum, Pluronic F 127 and PVP K30, which significantly influenced characteristics like in vitro mucoadhesive strength, in vitro drug release, swelling index, and in vitro residence time. The tablet was coated with an impermeable backing layer of ethyl cellulose to ensure unidirectional drug release. Different penetration enhancers were tried to improve the permeation of pravastatin sodium through buccal mucosa. Formulation containing 1% sodium lauryl sulfate showed good permeation of pravastatin sodium through mucosa. Histopathological studies revealed no buccal mucosal damage. It can be concluded that buccal route can be one of the alternatives available for the administration of pravastatin sodium.  相似文献   

20.
脑部靶向给药技术   总被引:1,自引:0,他引:1  
介于脑部毛细血管与脑组织之间的血脑屏障是一层难以通过的生理屏障 ,能够阻挡大多数外源物质进入脑内。临床上采用的中枢神经系统药物大多是能够扩散通过血脑屏障的小分子脂溶性物质 ,而这类药物已经远远不能满足临床需要 ,很多疾病的诊断、治疗需要大分子、水溶性物质。传统的将这类大分子药物导入脑部的方法效果差、危险性大 ,因此近年来针对能够通过血脑屏障脑部靶向给药技术的研究逐渐成为热点。综述了近年来国际上使用嵌合肽、免疫脂质体及纳米粒子解决脑部靶向性给药的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号