首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objectives

Postoperative cognitive dysfunction (POCD) is recognized as a complication in the elderly after cardiac surgery. Imaging of the brain provides evidence of neurodegeneration in elderly patients; however, abnormalities in brain structure and their relation to POCD are uncertain. This pilot study investigated whether loss of gray matter in the bilateral medial temporal lobe (MTL), seen in preoperative MRI, was associated with POCD.

Methods

Data were collected prospectively on 28 elderly patients scheduled for elective cardiac surgery. MRI of the brains of all patients were assessed for prior cerebral infarctions, and carotid and intracranial arterial stenosis. Patients also completed six neuropsychological tests of memory, attention and executive function before and after surgery. POCD was defined as an individual decrease in more than two tests of at least 1 standard deviation from the group baseline mean for that test. The degree of gray matter loss in the MTL of each patient was calculated using voxel-based morphometry with three-dimensional, T1-weighted MRI. This represented the degree of gray matter change as a Z score.

Results

Postoperative cognitive dysfunction was identified in 8 of the 28 patients (29%). Patients with POCD had significantly more white matter lesions on MRI, and greater loss of gray matter in the bilateral MTL (average Z score 2.0±0.9) than patients without POCD. An analysis by stepwise logistic regression identified gray matter loss in the MTL and cerebral infarctions on MRI as independent predictors of POCD.

Conclusions

These preliminary findings suggested that reduced gray matter in the bilateral MTL and white matter lesions existed in brains of elderly cardiac surgery patients who experienced POCD. Additional studies with larger sample sizes are needed to confirm these findings.  相似文献   

2.
Coronary heart disease (CHD) has been linked with cognitive decline and dementia in several studies. CHD is strongly associated with blood pressure, but it is not clear how blood pressure levels or changes in blood pressure over time affect the relation between CHD and dementia-related pathology. The aim of this study was to investigate relations between CHD and cortical thickness, gray matter volume and white matter lesion (WML) volume on MRI, considering CHD duration and blood pressure levels from midlife to three decades later. The study population included 69 elderly at risk of dementia who participated in the Cardiovascular Risk Factors, Aging and Dementia (CAIDE) study. CAIDE participants were examined in midlife, re-examined 21 years later, and then after additionally 7 years (in total up to 30 years follow-up). MRIs from the second re-examination were used to calculate cortical thickness, gray matter and WML volume. CHD diagnoses were obtained from the Finnish Hospital Discharge Register. Linear regression analyses were adjusted for age, sex, follow-up time and scanner type, and additionally total intracranial volume in GM volume analyses. Adding diabetes, cholesterol or smoking to the models did not influence the results. CHD was associated with lower thickness in multiple regions, and lower total gray matter volume, particularly in people with longer disease duration (>10 years). Associations between CHD, cortical thickness and gray matter volume were strongest in people with CHD and hypertension in midlife, and those with CHD and declining blood pressure after midlife. No association was found between CHD and WML volumes. Based on these results, long-term CHD seems to have detrimental effects on brain gray matter tissue, and these effects are influenced by blood pressure levels and their changes over time.  相似文献   

3.
The aim of this study was to investigate brain structural alterations in adult immigrants who adapted to high altitude (HA). Voxel-based morphometry analysis of gray matter (GM) volumes, surface-based analysis of cortical thickness, and Tract-Based Spatial Statistics analysis of white matter fractional anisotropy (FA) based on MRI images were conducted on 16 adults (20–22 years) who immigrated to the Qinghai-Tibet Plateau (2300–4400 m) for 2 years. They had no chronic mountain sickness. Control group consisted of 16 matched sea level subjects. A battery of neuropsychological tests was also conducted. HA immigrants showed significantly decreased GM volumes in the right postcentral gyrus and right superior frontal gyrus, and increased GM volumes in the right middle frontal gyrus, right parahippocampal gyrus, right inferior and middle temporal gyri, bilateral inferior ventral pons, and right cerebellum crus1. While there was some divergence in the left hemisphere, surface-based patterns of GM changes in the right hemisphere resembled those seen for VBM analysis. FA changes were observed in multiple WM tracts. HA immigrants showed significant impairment in pulmonary function, increase in reaction time, and deficit in mental rotation. Parahippocampal and middle frontal GM volumes correlated with vital capacity. Superior frontal GM volume correlated with mental rotation and postcentral GM correlated with reaction time. Paracentral lobule and frontal FA correlated with mental rotation reaction time. There might be structural modifications occurred in the adult immigrants during adaptation to HA. The changes in GM may be related to impaired respiratory function and psychological deficits.  相似文献   

4.
The aim of the study was to evaluate the value of assessing white matter integrity using diffusion tensor imaging (DTI) for classification of mild cognitive impairment (MCI) and prediction of cognitive impairments in comparison to brain atrophy measurements using structural MRI. Fifty-one patients with MCI and 66 cognitive normal controls (CN) underwent DTI and T1-weighted structural MRI. DTI measures included fractional anisotropy (FA) and radial diffusivity (DR) from 20 predetermined regions-of-interest (ROIs) in the commissural, limbic and association tracts, which are thought to be involved in Alzheimer''s disease; measures of regional gray matter (GM) volume included 21 ROIs in medial temporal lobe, parietal cortex, and subcortical regions. Significant group differences between MCI and CN were detected by each MRI modality: In particular, reduced FA was found in splenium, left isthmus cingulum and fornix; increased DR was found in splenium, left isthmus cingulum and bilateral uncinate fasciculi; reduced GM volume was found in bilateral hippocampi, left entorhinal cortex, right amygdala and bilateral thalamus; and thinner cortex was found in the left entorhinal cortex. Group classifications based on FA or DR was significant and better than classifications based on GM volume. Using either DR or FA together with GM volume improved classification accuracy. Furthermore, all three measures, FA, DR and GM volume were similarly accurate in predicting cognitive performance in MCI patients. Taken together, the results imply that DTI measures are as accurate as measures of GM volume in detecting brain alterations that are associated with cognitive impairment. Furthermore, a combination of DTI and structural MRI measurements improves classification accuracy.  相似文献   

5.
Abstract: Separate analyses were made of gray matter and white matter from rat brain after neonatal undernutrition. Newborn rats were redistributed into control, large-litter, and protein-deficient groups. Large litters had 16 rather than 8 pups with a dam. Protein-deficient dams were fed a 4%, instead of a 24%, casein diet. For controls at 21 days of age, the 2',3'-cyclic nucleotide-3'-phosphohydrolase activity was more than fivefold greater in white matter than in gray matter. Severe undernutrition (protein-deficient) gave 2',3'-cyclic nucleotide-3'-phosphohydrolase activities that were 36% lower in gray matter and 56% lower in white matter. Lipid galactose concentrations were 17% less than control in both gray matter and white matter. In protein-deficient white matter, phospholipid concentrations were 15% lower than control. Ethanolamine plasmalogens and phosphatidyl serine were affected most. Moderate undernutrition (large litter) had no effect on 2',3'-cyclic nucleotide-3'-phosphohydrolase activity. A 14% deficit of galactolipids was the only difference from controls in large-litter white matter. In large-litter gray matter, phospholipid concentrations were 16% higher than controls. Nearly all glycerophos-pholipids, including plasmalogens, were affected. With the exception of the myelination markers, 2',3'-cyclic nucleotide-3'-phosphohydrolase and lipid galactose, the development of lipids in gray matter is almost completely spared from the effects of undernutrition. The primary effect of undernutrition is on myelination, especially in white matter.  相似文献   

6.

Background

Psychotherapy has demonstrated comparable efficacy to antidepressant medication in the treatment of major depressive disorder. Metabolic alterations in the MDD state and in response to treatment have been detected by functional imaging methods, but the underlying white matter microstructural changes remain unknown. The goal of this study is to apply diffusion tensor imaging techniques to investigate psychotherapy-specific responses in the white matter.

Methods

Twenty-one of forty-five outpatients diagnosed with major depression underwent diffusion tensor imaging before and after a four-week course of guided imagery psychotherapy. We compared fractional anisotropy in depressed patients (n = 21) with healthy controls (n = 22), and before-after treatment, using whole brain voxel-wise analysis.

Results

Post-treatment, depressed subjects showed a significant reduction in the 17-item Hamilton Depression Rating Scale. As compared to healthy controls, depressed subjects demonstrated significantly increased fractional anisotropy in the right thalamus. Psychopathological changes did not recover post-treatment, but a novel region of increased fractional anisotropy was discovered in the frontal lobe.

Conclusions

At an early stage of psychotherapy, higher fractional anisotropy was detected in the frontal emotional regulation-associated region. This finding reveals that psychotherapy may induce white matter changes in the frontal lobe. This remodeling of frontal connections within mood regulation networks positively contributes to the “top-down” mechanism of psychotherapy.  相似文献   

7.
Prefrontal cortex mediates cognitive control by means of circuitry organized along dorso-ventral and rostro-caudal axes. Along the dorso-ventral axis, ventrolateral PFC controls semantic information, whereas dorsolateral PFC encodes task rules. Along the rostro-caudal axis, anterior prefrontal cortex encodes complex rules and relationships between stimuli, whereas posterior prefrontal cortex encodes simple relationships between stimuli and behavior. Evidence of these gradients of prefrontal cortex organization has been well documented in fMRI studies, but their functional correlates have not been examined with regard to integrity of underlying white matter tracts. We hypothesized that (a) the integrity of specific white matter tracts is related to cognitive functioning in a manner consistent with the dorso-ventral and rostro-caudal organization of the prefrontal cortex, and (b) this would be particularly evident in healthy older adults. We assessed three cognitive processes that recruit the prefrontal cortex and can distinguish white matter tracts along the dorso-ventral and rostro-caudal dimensions –episodic memory, working memory, and reasoning. Correlations between cognition and fractional anisotropy as well as fiber tractography revealed: (a) Episodic memory was related to ventral prefrontal cortex-thalamo-hippocampal fiber integrity; (b) Working memory was related to integrity of corpus callosum body fibers subserving dorsolateral prefrontal cortex; and (c) Reasoning was related to integrity of corpus callosum body fibers subserving rostral and caudal dorsolateral prefrontal cortex. These findings confirm the ventrolateral prefrontal cortex''s role in semantic control and the dorsolateral prefrontal cortex''s role in rule-based processing, in accordance with the dorso-ventral prefrontal cortex gradient. Reasoning-related rostral and caudal superior frontal white matter may facilitate different levels of task rule complexity. This study is the first to demonstrate dorso-ventral and rostro-caudal prefrontal cortex processing gradients in white matter integrity.  相似文献   

8.
Previous research has indicated the importance of the frontal lobe and its ‘executive’ connections to other brain structures as crucial in explaining primate neocortical adaptations. However, a representative sample of volumetric measurements of frontal connective tissue (white matter) has not been available. In this study, we present new volumetric measurements of white and grey matter in the frontal and non-frontal neocortical lobes from 18 anthropoid species. We analyze this data in the context of existing theories of neocortex, frontal lobe and white versus grey matter hyperscaling. Results indicate that the ‘universal scaling law’ of neocortical white to grey matter applies separately for frontal and non-frontal lobes; that hyperscaling of both neocortex and frontal lobe to rest of brain is mainly due to frontal white matter; and that changes in frontal (but not non-frontal) white matter volume are associated with changes in rest of brain and basal ganglia, a group of subcortical nuclei functionally linked to ‘executive control’. Results suggest a central role for frontal white matter in explaining neocortex and frontal lobe hyperscaling, brain size variation and higher neural structural connectivity in anthropoids.  相似文献   

9.
Anorexia nervosa (AN) is an eating disorder characterized by the relentless pursuit to lose weight, mostly through self-starvation, and a distorted body image. AN tends to begin during adolescence among women. However, the underlying neural mechanisms related to AN remain unclear. Using voxel-based morphometry based on magnetic resonance imaging scans, we investigated whether the presence of AN was associated with discernible changes in brain morphology. Participants were 20 un-medicated, right-handed patients with early-onset AN and 14 healthy control subjects. Group differences in gray matter volume (GMV) were assessed using high-resolution, T1-weighted, volumetric magnetic resonance imaging datasets (3T Trio scanner; Siemens AG) and analyzed after controlling for age and total GMV, which was decreased in the bilateral inferior frontal gyrus (IFG) (left IFG: FWE corrected, p < 0.05; right IFG: uncorrected, p < 0.05) of patients with AN. The GMV in the bilateral IFG correlated significantly with current age (left IFG: r = -.481, p < .05; right IFG: r = -.601, p < .01) and was limited to the AN group. We speculate that decreased IFG volume might lead to deficits in executive functioning or inhibitory control within neural reward systems. Precocious or unbalanced neurological trimming within this particular region might be an important factor for the pathogenesis of AN onset.  相似文献   

10.

Background

Myelination of white matter in the brain continues throughout adolescence and early adulthood. This cortical immaturity has been suggested as a potential cause of dangerous and impulsive behaviors in adolescence.

Methodology/Principal Findings

We tested this hypothesis in a group of healthy adolescents, age 12–18 (N = 91), who underwent diffusion tensor imaging (DTI) to delineate cortical white matter tracts. As a measure of real-world risk taking, participants completed the Adolescent Risk Questionnaire (ARQ) which measures engagement in dangerous activities. After adjusting for age-related changes in both DTI and ARQ, engagement in dangerous behaviors was found to be positively correlated with fractional anisotropy and negatively correlated with transverse diffusivity in frontal white matter tracts, indicative of increased myelination and/or density of fibers (ages 14–18, N = 60).

Conclusions/Significance

The direction of correlation suggests that rather than having immature cortices, adolescents who engage in dangerous activities have frontal white matter tracts that are more adult in form than their more conservative peers.  相似文献   

11.

Background

Although schizophrenia has been associated with abnormalities in brain anatomy, imaging studies have not fully determined the nature and relative contributions of gray matter (GM) and white matter (WM) disturbances underlying these findings. We sought to determine the pattern and distribution of these GM and WM abnormalities. Furthermore, we aimed to clarify the contribution of abnormalities in cortical thickness and cortical surface area to the reduced GM volumes reported in schizophrenia.

Methods

We recruited 76 persons with schizophrenia and 57 healthy controls from the community and obtained measures of cortical and WM surface areas, of local volumes along the brain and WM surfaces, and of cortical thickness.

Results

We detected reduced local volumes in patients along corresponding locations of the brain and WM surfaces in addition to bilateral greater thickness of perisylvian cortices and thinner cortex in the superior frontal and cingulate gyri. Total cortical and WM surface areas were reduced. Patients with worse performance on the serial-position task, a measure of working memory, had a higher burden of WM abnormalities.

Conclusions

Reduced local volumes along the surface of the brain mirrored the locations of abnormalities along the surface of the underlying WM, rather than of abnormalities of cortical thickness. Moreover, anatomical features of white matter, but not cortical thickness, correlated with measures of working memory. We propose that reductions in WM and smaller total cortical surface area could be central anatomical abnormalities in schizophrenia, driving, at least partially, the reduced regional GM volumes often observed in this illness.  相似文献   

12.
In the present study, we investigated brain morphological signatures of dyslexia by using a voxel-based asymmetry analysis. Dyslexia is a developmental disorder that affects the acquisition of reading and spelling abilities and is associated with a phonological deficit. Speech perception disabilities have been associated with this deficit, particularly when listening conditions are challenging, such as in noisy environments. These deficits are associated with known neurophysiological correlates, such as a reduction in the functional activation or a modification of functional asymmetry in the cortical regions involved in speech processing, such as the bilateral superior temporal areas. These functional deficits have been associated with macroscopic morphological abnormalities, which potentially include a reduction in gray and white matter volumes, combined with modifications of the leftward asymmetry along the perisylvian areas. The purpose of this study was to investigate gray/white matter distribution asymmetries in dyslexic adults using automated image processing derived from the voxel-based morphometry technique. Correlations with speech-in-noise perception abilities were also investigated. The results confirmed the presence of gray matter distribution abnormalities in the superior temporal gyrus (STG) and the superior temporal Sulcus (STS) in individuals with dyslexia. Specifically, the gray matter of adults with dyslexia was symmetrically distributed over one particular region of the STS, the temporal voice area, whereas normal readers showed a clear rightward gray matter asymmetry in this area. We also identified a region in the left posterior STG in which the white matter distribution asymmetry was correlated to speech-in-noise comprehension abilities in dyslexic adults. These results provide further information concerning the morphological alterations observed in dyslexia, revealing the presence of both gray and white matter distribution anomalies and the potential involvement of these defects in speech-in-noise deficits.  相似文献   

13.
Multiple sclerosis (MS) is an inflammatory neurodegenerative disease of the central nervous system (CNS) which leads to progressive neurological disability. Our previous studies have demonstrated mitochondrial involvement in MS cortical pathology and others have documented decreased levels of the neuronal mitochondrial metabolite N-acetyl aspartate (NAA) in the MS brain. While NAA is synthesized in neurons, it is broken down in oligodendrocytes into aspartate and acetate. The resulting acetate is incorporated into myelin lipids, linking neuronal mitochondrial function to oligodendrocyte-mediated elaboration of myelin lipids in the CNS. In the present study we show that treating human SH-SY5Y neuroblastoma cells with the electron transport chain inhibitor antimycin A decreased levels of NAA as measured by HPLC. To better understand the significance of the relationship between mitochondrial function and levels of NAA and its breakdown product acetate on MS pathology we then quantitated the levels of NAA and acetate in MS and control postmortem tissue blocks. Regardless of lesion status, we observed that levels of NAA were decreased 25 and 32 % in gray matter from parietal and motor cortex in MS, respectively, compared to controls. Acetate levels in adjacent white matter mirrored these decreases as evidenced by the 36 and 45 % reduction in acetate obtained from parietal and motor cortices. These data suggest a novel mechanism whereby mitochondrial dysfunction and reduced NAA levels in neurons may result in compromised myelination by oligodendrocytes due to decreased availability of acetate necessary for the synthesis of myelin lipids.  相似文献   

14.
The purpose of this study was to evaluate the brain by postmortem computed tomography (PMCT) versus antemortem computed tomography (AMCT) using brains from the same patients. We studied 36 nontraumatic subjects who underwent AMCT, PMCT, and pathological autopsy in our hospital between April 2009 and December 2013. PMCT was performed within 20 h after death, followed by pathological autopsy including the brain. Autopsy confirmed the absence of intracranial disorders that might be related to the cause of death or might affect measurements in our study. Width of the third ventricle, width of the central sulcus, and attenuation in gray matter (GM) and white matter (WM) from the same area of the basal ganglia, centrum semiovale, and high convexity were statistically compared between AMCT and PMCT. Both the width of the third ventricle and the central sulcus were significantly shorter in PMCT than in AMCT (P < 0.0001). GM attenuation increased after death at the level of the centrum semiovale and high convexity, but the differences were not statistically significant considering the differences in attenuation among the different computed tomography scanners. WM attenuation significantly increased after death at all levels (P<0.0001). The differences were larger than the differences in scanners. GM/WM ratio of attenuation was significantly lower by PMCT than by AMCT at all levels (P<0.0001). PMCT showed an increase in WM attenuation, loss of GM–WM differentiation, and brain swelling, evidenced by a decrease in the size of ventricles and sulci.  相似文献   

15.

Background

Gait impairments increase with advancing age and can lead to falls and loss of independence. Brain atrophy also occurs in older age and may contribute to gait decline. We aimed to investigate global and regional relationships of cerebral gray and white matter volumes with gait speed, and its determinants step length and cadence, in older people.

Methods

In a population-based study, participants aged >60 years without Parkinson''s disease or brain infarcts underwent magnetic resonance imaging and gait measurements using a computerized walkway. Linear regression was used to study associations of total gray and white matter volumes with gait, adjusting for each other, age, sex, height and white matter hyperintensity volume. Other covariates considered in analyses included weight and vascular disease history. Voxel-based morphometry was used to study regional relationships of gray and white matter with gait.

Results

There were 305 participants, mean age 71.4 (6.9) years, 54% male, mean gait speed 1.16 (0.22) m/s. Smaller total gray matter volume was independently associated with poorer gait speed (p = 0.001) and step length (p<0.001), but not cadence. Smaller volumes of cortical and subcortical gray matter in bilateral regions important for motor control, vision, perception and memory were independently associated with slower gait speed and shorter steps. No global or regional associations were observed between white matter volume and gait independent of gray matter volume, white matter hyperintensity volume and other covariates.

Conclusion

Smaller gray matter volume in bilaterally distributed brain networks serving motor control was associated with slower gait speed and step length, but not cadence.  相似文献   

16.
17.

Background

Reaction time (RT) is one of the most widely used measures of performance in experimental psychology, yet relatively few fMRI studies have included trial-by-trial differences in RT as a predictor variable in their analyses. Using a multi-study approach, we investigated whether there are brain regions that show a general relationship between trial-by-trial RT variability and activation across a range of cognitive tasks.

Methodology/Principal Findings

The relation between trial-by-trial differences in RT and brain activation was modeled in five different fMRI datasets spanning a range of experimental tasks and stimulus modalities. Three main findings were identified. First, in a widely distributed set of gray and white matter regions, activation was delayed on trials with long RTs relative to short RTs, suggesting delayed initiation of underlying physiological processes. Second, in lateral and medial frontal regions, activation showed a “time-on-task” effect, increasing linearly as a function of RT. Finally, RT variability reliably modulated the BOLD signal not only in gray matter but also in diffuse regions of white matter.

Conclusions/Significance

The results highlight the importance of modeling trial-by-trial RT in fMRI analyses and raise the possibility that RT variability may provide a powerful probe for investigating the previously elusive white matter BOLD signal.  相似文献   

18.
The mechanisms by which aging and other processes can affect the structure and function of brain networks are important to understanding normal age-related cognitive decline. Advancing age is known to be associated with various disease processes, including clinically asymptomatic vascular and inflammation processes that contribute to white matter structural alteration and potential injury. The effects of these processes on the function of distributed cognitive networks, however, are poorly understood. We hypothesized that the extent of magnetic resonance imaging white matter hyperintensities would be associated with visual attentional control in healthy aging, measured using a functional magnetic resonance imaging search task. We assessed cognitively healthy older adults with search tasks indexing processing speed and attentional control. Expanding upon previous research, older adults demonstrate activation across a frontal-parietal attentional control network. Further, greater white matter hyperintensity volume was associated with increased activation of a frontal network node independent of chronological age. Also consistent with previous research, greater white matter hyperintensity volume was associated with anatomically specific reductions in functional magnetic resonance imaging functional connectivity during search among attentional control regions. White matter hyperintensities may lead to subtle attentional network dysfunction, potentially through impaired frontal-parietal and frontal interhemispheric connectivity, suggesting that clinically silent white matter biomarkers of vascular and inflammatory injury can contribute to differences in search performance and brain function in aging, and likely contribute to advanced age-related impairments in cognitive control.  相似文献   

19.
Microglia, the resident immune cells of the CNS, are primary regulators of the neuroimmune response to injury. Type I interferons (IFNs), including the IFNαs and IFNβ, are key cytokines in the innate immune system. Their activity is implicated in the regulation of microglial function both during development and in response to neuroinflammation, ischemia, and neurodegeneration. Data from numerous studies in multiple sclerosis (MS) and stroke suggest that type I IFNs can modulate the microglial phenotype, influence the overall neuroimmune milieu, regulate phagocytosis, and affect blood–brain barrier integrity. All of these IFN-induced effects result in numerous downstream consequences on white matter pathology and microglial reactivity. Dysregulation of IFN signaling in mouse models with genetic deficiency in ubiquitin specific protease 18 (USP18) leads to a severe neurological phenotype and neuropathological changes that include white matter microgliosis and pro-inflammatory gene expression in dystrophic microglia. A class of genetic disorders in humans, referred to as pseudo-TORCH syndrome (PTS) for the clinical resemblance to infection-induced TORCH syndrome, also show dysregulation of IFN signaling, which leads to severe neurological developmental disease. In these disorders, the excessive activation of IFN signaling during CNS development results in a destructive interferonopathy with similar induction of microglial dysfunction as seen in USP18 deficient mice. Other recent studies implicate “microgliopathies” more broadly in neurological disorders including Alzheimer’s disease (AD) and MS, suggesting that microglia are a potential therapeutic target for disease prevention and/or treatment, with interferon signaling playing a key role in regulating the microglial phenotype.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号