首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Epigenetic modifications, such as DNA methylation variation, can generate heritable phenotypic variation independent of the underlying genetic code. However, epigenetic variation in natural plant populations is poorly documented and little understood. Here, we test whether northward range expansion of obligate apomicts of the common dandelion (Taraxacum officinale) is associated with DNA methylation variation. We characterized and compared patterns of genetic and DNA methylation variation in greenhouse‐reared offspring of T. officinale that were collected along a latitudinal transect of northward range expansion in Europe. Genetic AFLP and epigenetic MS‐AFLP markers revealed high levels of local diversity and modest but significant heritable differentiation between sampling locations and between the southern, central and northern regions of the transect. Patterns of genetic and epigenetic variation were significantly correlated, reflecting the genetic control over epigenetic variation and/or the accumulation of lineage‐specific spontaneous epimutations, which may be selectively neutral. In addition, we identified a small component of DNA methylation differentiation along the transect that is independent of genetic variation. This epigenetic differentiation might reflect environment‐specific induction or, in case the DNA methylation variation affects relevant traits and fitness, selection of heritable DNA methylation variants. Such generated epigenetic variants might contribute to the adaptive capacity of individual asexual lineages under changing environments. Our results highlight the potential of heritable DNA methylation variation to contribute to population differentiation along ecological gradients. Further studies are needed using higher resolution methods to understand the functional significance of such natural occurring epigenetic differentiation.  相似文献   

3.
Loss or gain of DNA methylation can affect gene expression and is sometimes transmitted across generations. Such epigenetic alterations are thus a possible source of heritable phenotypic variation in the absence of DNA sequence change. However, attempts to assess the prevalence of stable epigenetic variation in natural and experimental populations and to quantify its impact on complex traits have been hampered by the confounding effects of DNA sequence polymorphisms. To overcome this problem as much as possible, two parents with little DNA sequence differences, but contrasting DNA methylation profiles, were used to derive a panel of epigenetic Recombinant Inbred Lines (epiRILs) in the reference plant Arabidopsis thaliana. The epiRILs showed variation and high heritability for flowering time and plant height (~30%), as well as stable inheritance of multiple parental DNA methylation variants (epialleles) over at least eight generations. These findings provide a first rationale to identify epiallelic variants that contribute to heritable variation in complex traits using linkage or association studies. More generally, the demonstration that numerous epialleles across the genome can be stable over many generations in the absence of selection or extensive DNA sequence variation highlights the need to integrate epigenetic information into population genetics studies.  相似文献   

4.
The developmental origins of adult health and disease (DOHaD) hypothesis that argues for a causal relationship between under-nutrition during early life and increased risk for a range of diseases in adulthood is gaining epidemiological support. One potential mechanism mediating these effects is the modulation of epigenetic markings, specifically DNA methylation. Since folate is an important methyl donor, alterations in supply of this micronutrient may influence the availability of methyl groups for DNA methylation. We hypothesised that low folate supply in utero and post-weaning would alter the DNA methylation profile of offspring. In two separate 2 × 2 factorial designed experiments, female C57Bl6/J mice were fed low- or control/high-folate diets during mating, and through pregnancy and lactation. Offspring were weaned on to either low- or control/high-folate diets, resulting in 4 treatment groups/experiment. Genomic DNA methylation was measured in the small intestine (SI) of 100-day-old offspring. In both experiments, SI genomic DNA from offspring of low-folate-fed dams was significantly hypomethylated compared with the corresponding control/high folate group (P = 0.009/P = 0.006, respectively). Post-weaning folate supply did not affect SI genomic DNA methylation significantly. These observations demonstrate that early life folate depletion affects epigenetic markings, that this effect is not modulated by post-weaning folate supply and that altered epigenetic marks persist into adulthood.  相似文献   

5.
Epigenetic variation is frequently observed in plants and direct relationships between differences in DNA methylation and phenotypic responses to changing environments have often been described. The identification of contributing genetic loci, however, was until recently hampered by the lack of suitable genome wide mapping resources that specifically segregate for epigenetic marks. The development of epi-RIL populations in the model species Arabidopsis thaliana has alleviated this obstacle, enabling the accurate genetic analysis of epigenetic variation. Comprehensive morphological phenotyping of a ddm1 derived epi-RIL population in different environments and subsequent epi-QTL mapping revealed a high number of epi-QTLs and pleiotropic effects of several DMRs on numerous traits. For a number of these epi-QTLs epistatic interactions could be observed, further adding to the complexity of epigenetic regulation. Moreover, linkage to epigenetic marks indicated a specific role for DNA-methylation variation, rather than TE transposition, in plastic responses to changing environments. These findings provide supportive evidence for a role of epigenetic regulation in evolutionary and adaptive processes.  相似文献   

6.
Selective breeding often produces an improvement in phenotype. Much of the phenotypic change within a species is a consequence of genetic variation. However, there is growing evidence for phenotypic change even in the absence of DNA sequence polymorphisms, termed epigenetic variation. This study’s goal was to investigate the genetic and epigenetic variation in the mass selection populations of the Pacific oyster (Crassostrea gigas), determine if any correlation exists between the genetic and epigenetic variations. This can serve as a first step in investigating the potential role epigenetic variations have in selective breeding. Amplified fragment length polymorphism analysis and methylation-sensitive amplified polymorphism methodology were used to monitor genetic and epigenetic variation in two populations (the base stock and the third selected generation) from a mass selection line in the Pacific oyster. The correlation between genetic and epigenetic variation was evaluated by Co-Inertia Analysis. The genetic difference was mainly found in the gene frequency shift revealed by the F ST value (0.0151, P < 0.01) and no significant reduction in genetic diversity was detected. The percentage of methylation in C. gigas was 26.4 %. No significant difference was observed on the average state of methylation, but a few bands showed different frequencies between the two populations. Co-Inertia Analysis revealed a significant association between the genetic and epigenetic profiles (P < 0.01).  相似文献   

7.
Despite significant advances made in epigenetic research in recent decades, many questions remain unresolved, especially concerning cause and consequence of epigenetic marks with respect to gene expression modulation (GEM). Technologies allowing the targeting of epigenetic enzymes to predetermined DNA sequences are uniquely suited to answer such questions and could provide potent (bio)medical tools. Toward the goal of gene-specific GEM by overwriting epigenetic marks (Epigenetic Editing, EGE), instructive epigenetic marks need to be identified and their writers/erasers should then be fused to gene-specific DNA binding domains. The appropriate epigenetic mark(s) to change in order to efficiently modulate gene expression might have to be validated for any given chromatin context and should be (mitotically) stable. Various insights in such issues have been obtained by sequence-specific targeting of epigenetic enzymes, as is presented in this review. Features of such studies provide critical aspects for further improving EGE. An example of this is the direct effect of the edited mark versus the indirect effect of recruited secondary proteins by targeting epigenetic enzymes (or their domains). Proof-of-concept of expression modulation of an endogenous target gene is emerging from the few EGE studies reported. Apart from its promise in correcting disease-associated epi-mutations, EGE represents a powerful tool to address fundamental epigenetic questions.  相似文献   

8.
The relationship between genotype (which is inherited) and phenotype (the target of selection) is mediated by environmental inputs on gene expression, trait development, and phenotypic integration. Phenotypic plasticity or epigenetic modification might influence evolution in two general ways: (1) by stimulating evolutionary responses to environmental change via population persistence or by revealing cryptic genetic variation to selection, and (2) through the process of genetic accommodation, whereby natural selection acts to improve the form, regulation, and phenotypic integration of novel phenotypic variants. We provide an overview of models and mechanisms for how such evolutionary influences may be manifested both for plasticity and epigenetic marking. We point to promising avenues of research, identifying systems that can best be used to address the role of plasticity in evolution, as well as the need to apply our expanding knowledge of genetic and epigenetic mechanisms to our understanding of how genetic accommodation occurs in nature. Our review of a wide variety of studies finds widespread evidence for evolution by genetic accommodation.  相似文献   

9.
10.
Phenotypic variation determines the capacity of plants to adapt to changing environments and to colonize new habitats. Deciphering the mechanisms contributing to plant phenotypic variation and their effects on plant ecological interactions and evolutionary dynamics is thus central to all biological disciplines. In the past few decades, research on plant epigenetics is showing that (1) epigenetic variation is related to phenotypic variation and that some epigenetic marks drive major phenotypic changes in plants; (2) plant epigenomes are highly diverse, dynamic, and can respond rapidly to a variety of biotic and abiotic stimuli; (3) epigenetic variation can respond to selection and therefore play a role in adaptive evolution. Yet, current information in terms of species, geographic ranges, and ecological contexts analyzed so far is too limited to allow for generalizations about the relevance of epigenetic regulation in phenotypic innovation and plant adaptation across taxa. In this report, we contextualize the potential role of the epigenome in plant adaptation to the environment and describe the latest research in this field presented during the symposium “Plant epigenetics: phenotypic and functional diversity beyond the DNA sequence” held within the Botany 2020 conference framework in summer 2020.  相似文献   

11.
R DeMars 《Mutation research》1974,24(3):335-364
In vitro enumeration of diploid human cell variants that are resistant to purine analogues is a possible method of detecting mutagenesis. Their incidences can be increased by the known mutagens, X-rays and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). Usefulness of this method depends on the kinds of hereditary changes that confer analogue-resistance on somatic cells. If resistance usually results from changes in genetic material, in vitro studies could be useful indicators of mutagenic effects on somatic cells and germ cells in vivo. If epigenetic changes are primarily responsible for analogue-resistant variants, their enumeration might not provide information relevant to germinal mutations but would still be a useful way to detect induction of general kinds of stable phenotypic changes that could cause cancer. This article outlines hypothetical epigenetic and genetic causes of somatic cell variation and a prospective genetic analysis of human cell variants that are resistant to 8-azaguanine (AG) or 2,6-diaminopurine ( (DAP).Recent evidences and arguments favoring epigenetic origins of resistance to base-analogues are inconclusive. The often cited high rate of changes causing impermeability to BUdR in hamster cells is based on one improperly executed determination. Comparisons of rates of variation conferring BUdR-resistance on cultured haploid and diploid frog cells included diploid variants that did not behave as mutants and ignored major sources of error in estimating mutation rates. AG-resistance could result from recessive mutations in X-chromosomal genes but comparisons of rates of mutation in hamster cells of different ploidies did not provide information about the numbers of X-chromosomes in the variants. Reports that normal rodent HGPRT reappeared in hybrids of enzyme-deficient rodent cells and HGPRT-containing cells of other species or in the rodent cells alone in response to the conditions of cell hybridization did not include adequate controls for reversions in mutant genes of the rodent cells. Questions about the epigenetic and genetic origins of analogue-resistance are mostly unanswered. It remains possible that some kinds of abnormal epigenetic changes cause somatic disease. Specific methods for detecting their occurrence and responsiveness to environmental factors should be devised by focusing efforts on traits that are normally subject to epigenetic regulation. Derepression of genes on the inactive X-chromosome and of liver phenylalanine hydroxylase production are presented as possible examples of abnormal epigenetic changes that could be quantitatively studied by direct selection in vitro.  相似文献   

12.
Epigenetics is likely an important factor in morphological and physiological acclimation, phenotypic plasticity, and potentially ecological dynamics such as invasiveness. We propose that Phragmites australis is an ideal model species for studies of epigenetics as a factor in plant invasions and ecology due to natural clonal replication (controlling for genetic variation) and the co-occurrence of subspecies with distinct life history strategies such as differences in invasiveness. In earlier work, genotypes and constituent clonal ramets were identified using microsatellite markers. In this pilot study, we screened the same ramets for epigenetic variation with Methylation-Sensitive AFLPs (MS-AFLPs), a modified type of AFLP dependent on differentially methylation-sensitive restriction enzymes. We found a significant difference in epigenetic signatures between introduced and native subspecies, and found that introduced P. australis demonstrated more epigenetic variation than their native counterparts. In both subspecies we observed moderate variation between genotypes relative to the higher degree of epigenetic variation found within genotypes (among ramets), suggesting that epigenotype may be more closely aligned with microhabitat than within-subspecies genotype. Finally, we observed potential epigenetic variation by site. This is the first study to investigate natural variation in DNA methylation patterns of P. australis and establishes the baseline in our understanding of the ecological relevance of epigenetics in this species.  相似文献   

13.
14.
With the emergence of new CRISPR/dCas9 tools that enable site specific modulation of DNA methylation and histone modifications, more detailed investigations of the contribution of epigenetic regulation to the precise phenotype of cells in culture, including recombinant production subclones, is now possible. These also allow a wide range of applications in metabolic engineering once the impact of such epigenetic modifications on the chromatin state is available.In this study, enhanced DNA methylation tools were targeted to a recombinant viral promoter (CMV), an endogenous promoter that is silenced in its native state in CHO cells, but had been reactivated previously (β-galactoside α-2,6-sialyltransferase 1) and an active endogenous promoter (α-1,6-fucosyltransferase), respectively. Comparative ChIP-analysis of histone modifications revealed a general loss of active promoter histone marks and the acquisition of distinct repressive heterochromatin marks after targeted methylation. On the other hand, targeted demethylation resulted in autologous acquisition of active promoter histone marks and loss of repressive heterochromatin marks. These data suggest that DNA methylation directs the removal or deposition of specific histone marks associated with either active, poised or silenced chromatin. Moreover, we show that de novo methylation of the CMV promoter results in reduced transgene expression in CHO cells. Although targeted DNA methylation is not efficient, the transgene is repressed, thus offering an explanation for seemingly conflicting reports about the source of CMV promoter instability in CHO cells.Importantly, modulation of epigenetic marks enables to nudge the cell into a specific gene expression pattern or phenotype, which is stabilized in the cell by autologous addition of further epigenetic marks. Such engineering strategies have the added advantage of being reversible and potentially tunable to not only turn on or off a targeted gene, but also to achieve the setting of a desirable expression level.  相似文献   

15.
Sexual reproduction involves epigenetic reprogramming comprising DNA methylation and histone modifications. In addition, dynamics of HISTONE3 (H3) variant H3.3 upon fertilization are conserved in animals, suggesting an essential role. In contrast to H3, H3.3 marks actively transcribed regions of the genome and can be deposited in a replication-independent manner. Although H3 variants are conserved in plants, their dynamics during fertilization have remained unexplored. We overcame technical limitations to live imaging of the fertilization process in Arabidopsis thaliana and studied dynamics of the male-gamete-specific H3.3 and the centromeric Histone Three Related 12 (HTR12). The double-fertilization process in plants produces the zygote and the embryo-nourishing endosperm. We show that the zygote is characterized by replication-independent removal of paternal H3.3 and homogeneous incorporation of parental chromatin complements. In the endosperm, the paternal H3.3 is passively diluted by replication while the paternal chromatin remains segregated apart from the maternal chromatin (gonomery). Hence epigenetic regulations distinguish the two products of fertilization in plants. H3.3-replication-independent dynamics and gonomery also mark the first zygotic divisions in animal species. We thus propose the convergent selection of parental epigenetic imbalance involving H3 variants in sexually reproducing organisms.  相似文献   

16.
In flowering plants, success or failure of seed development is determined by various genetic mechanisms. During sexual reproduction, double fertilization produces the embryo and endosperm, which both contain maternally and paternally derived genomes. In endosperm, a reproductive barrier is often observed in inter-specific crosses. Endosperm is a tissue that provides nourishment for the embryo within the seed, in a similar fashion to the placenta of mammals, and for the young seedling after germination. This review considers the relationship between the reproductive barrier in endosperm and genomic imprinting. Genomic imprinting is an epigenetic mechanism that results in mono-allelic gene expression that is parent-of-origin dependent. In Arabidopsis, recent studies of several imprinted gene loci have identified the epigenetic mechanisms that determine genomic imprinting. A crucial feature of genomic imprinting is that the maternally and paternally derived imprinted genes must carry some form of differential mark, usually DNA methylation and/or histone modification. Although the epigenetic marks should be complementary on maternally and paternally imprinted genes within a single species, it is possible that neither the patterns of epigenetic marks nor expression of imprinted genes are the same in different species. Moreover, in hybrid endosperm, the regulation of expression of imprinted genes can be affected by upstream regulatory mechanisms in the male and female gametophytes. Species-specific variations in epigenetic marks, the copy number of imprinted genes, and the epigenetic regulation of imprinted genes in hybrids might all play a role in the reproductive barriers observed in the endosperm of interspecific and interploidy crosses. These predicted molecular mechanisms might be related to earlier models such as the "endosperm balance number" (EBN) and "polar nuclei activation" (PNA) hypotheses.  相似文献   

17.
It has long been known that adaptive evolution can occur through genetic mutations in DNA sequence, but it is unclear whether adaptive evolution can occur through analogous epigenetic mechanisms, such as through DNA methylation. If epigenetic variation contributes directly to evolution, species under threat of disease, invasive competition, climate change or other stresses would have greater stores of variation from which to draw. We looked for evidence of natural selection acting on variably methylated DNA sites using population genomic analysis across three climatologically distinct populations of valley oaks. We found patterns of genetic and epigenetic differentiations that indicate local adaptation is operating on large portions of the oak genome. While CHG methyl polymorphisms are not playing a significant role and would make poor targets for natural selection, our findings suggest that CpG methyl polymorphisms as a whole are involved in local adaptation, either directly or through linkage to regions under selection.  相似文献   

18.
19.
Epigenetic variation is likely to contribute to the phenotypic plasticity and adaptative capacity of plant species, and may be especially important for long‐lived organisms with complex life cycles, including forest trees. Diverse environmental stresses and hybridization/polyploidization events can create reversible heritable epigenetic marks that can be transmitted to subsequent generations as a form of molecular “memory”. Epigenetic changes might also contribute to the ability of plants to colonize or persist in variable environments. In this review, we provide an overview of recent data on epigenetic mechanisms involved in developmental processes and responses to environmental cues in plant, with a focus on forest tree species. We consider the possible role of forest tree epigenetics as a new source of adaptive traits in plant breeding, biotechnology, and ecosystem conservation under rapid climate change.  相似文献   

20.
In long‐term grassland experiments, positive biodiversity effects on plant productivity commonly increase with time. Subsequent glasshouse experiments showed that these strengthened positive biodiversity effects persist not only in the local environment but also when plants are transferred into a common environment. Thus, we hypothesized that community diversity had acted as a selective agent, resulting in the emergence of plant monoculture and mixture types with differing genetic composition. To test our hypothesis, we grew offspring from plants that were grown for eleven years in monoculture or mixture environments in a biodiversity experiment (Jena Experiment) under controlled glasshouse conditions in monocultures or two‐species mixtures. We used epiGBS, a genotyping‐by‐sequencing approach combined with bisulphite conversion, to provide integrative genetic and epigenetic (i.e., DNA methylation) data. We observed significant divergence in genetic and DNA methylation data according to selection history in three out of five perennial grassland species, namely Galium mollugo, Prunella vulgaris and Veronica chamaedrys, with DNA methylation differences mostly reflecting the genetic differences. In addition, current diversity levels in the glasshouse had weak effects on epigenetic variation. However, given the limited genome coverage of the reference‐free bisulphite method epiGBS, it remains unclear how much of the differences in DNA methylation was independent of underlying genetic differences. Our results thus suggest that selection of genetic variants, and possibly epigenetic variants, caused the rapid emergence of monoculture and mixture types within plant species in the Jena Experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号