共查询到20条相似文献,搜索用时 15 毫秒
1.
Gene expression is a result of the interplay between the structure, type, kinetics, and specificity of gene regulatory interactions, whose diversity gives rise to the variety of life forms. As the dynamic behavior of gene regulatory networks depends on their structure, here we attempt to determine structural reasons which, despite the similarities in global network properties, may explain the large differences in organismal complexity. We demonstrate that the algebraic connectivity, the smallest non-trivial eigenvalue of the Laplacian, of the directed gene regulatory networks decreases with the increase of organismal complexity, and may therefore explain the difference between the variety of analyzed regulatory networks. In addition, our results point out that, for the species considered in this study, evolution favours decreasing concentration of strategically positioned feed forward loops, so that the network as a whole can increase the specificity towards changing environments. Moreover, contrary to the existing results, we show that the average degree, the length of the longest cascade, and the average cascade length of gene regulatory networks cannot recover the evolutionary relationships between organisms. Whereas the dynamical properties of special subnetworks are relatively well understood, there is still limited knowledge about the evolutionary reasons for the already identified design principles pertaining to these special subnetworks, underlying the global quantitative features of gene regulatory networks of different organisms. The behavior of the algebraic connectivity, which we show valid on gene regulatory networks extracted from curated databases, can serve as an additional evolutionary principle of organism-specific regulatory networks. 相似文献
2.
3.
4.
Stefan Braunewell 《Journal of theoretical biology》2009,258(4):502-512
The problem of reliability of the dynamics in biological regulatory networks is studied in the framework of a generalized Boolean network model with continuous timing and noise. Using well-known artificial genetic networks such as the repressilator, we discuss concepts of reliability of rhythmic attractors. In a simple evolution process we investigate how overall network structure affects the reliability of the dynamics. In the course of the evolution, networks are selected for reliable dynamics. We find that most networks can be easily evolved towards reliable functioning while preserving the original function. 相似文献
5.
6.
Models are of central importance in many scientific contexts. Mathematical and computational modeling of genetic regulatory networks promises to uncover the fundamental principles of living systems. Biological models, such as gene regulatory models, can help us better understand interactions among genes and how cells regulate their production of proteins and enzymes. One feature shared among living systems is their ability to cope with perturbations and remain stable, a property that is the result of evolutionary fine-tuning over many generations. In this study we use random Boolean networks (RBNs) as an abstract model of gene regulatory systems. By applying Differential Evolution (DE), an evolution-based optimization technique, we produce networks with increased stability. DE requires relatively few user-specified parameters, has fast convergence and does not rely on initial conditions to find the global minima within multi-dimensional search spaces. 相似文献
7.
Mathematical modeling often helps to provide a systems perspective on gene regulatory networks. In particular, qualitative approaches are useful when detailed kinetic information is lacking. Multiple methods have been developed that implement qualitative information in different ways, e.g., in purely discrete or hybrid discrete/continuous models. In this paper, we compare the discrete asynchronous logical modeling formalism for gene regulatory networks due to R. Thomas with piecewise affine differential equation models. We provide a local characterization of the qualitative dynamics of a piecewise affine differential equation model using the discrete dynamics of a corresponding Thomas model. Based on this result, we investigate the consistency of higher-level dynamical properties such as attractor characteristics and reachability. We show that although the two approaches are based on equivalent information, the resulting qualitative dynamics are different. In particular, the dynamics of the piecewise affine differential equation model is not a simple refinement of the dynamics of the Thomas model 相似文献
8.
9.
10.
We investigate how scale-free (SF) and Erd?s-Rényi (ER) topologies affect the interplay between evolvability and robustness of model gene regulatory networks with Boolean threshold dynamics. In agreement with Oikonomou and Cluzel (2006) we find that networks with SFin topologies, that is SF topology for incoming nodes and ER topology for outgoing nodes, are significantly more evolvable towards specific oscillatory targets than networks with ER topology for both incoming and outgoing nodes. Similar results are found for networks with SFboth and SFout topologies. The functionality of the SFout topology, which most closely resembles the structure of biological gene networks (Babu et al., 2004), is compared to the ER topology in further detail through an extension to multiple target outputs, with either an oscillatory or a non-oscillatory nature. For multiple oscillatory targets of the same length, the differences between SFout and ER networks are enhanced, but for non-oscillatory targets both types of networks show fairly similar evolvability. We find that SF networks generate oscillations much more easily than ER networks do, and this may explain why SF networks are more evolvable than ER networks are for oscillatory phenotypes. In spite of their greater evolvability, we find that networks with SFout topologies are also more robust to mutations (mutational robustness) than ER networks. Furthermore, the SFout topologies are more robust to changes in initial conditions (environmental robustness). For both topologies, we find that once a population of networks has reached the target state, further neutral evolution can lead to an increase in both the mutational robustness and the environmental robustness to changes in initial conditions. 相似文献
11.
Mochizuki A 《Journal of theoretical biology》2008,250(2):307-321
Complexity of gene regulatory network has been considered to be responsible for diversity of cells. Different types of cells, characterized by the expression patterns of genes, are produced in early development through the dynamics of gene activities based on the regulatory network. However, very little is known about relationship between the structure of regulatory networks and the dynamics of gene activities. In this paper, I introduce new idea of “steady-state compatibility” by which the diversity of possible gene activities can be determined from the topological structure of gene regulatory networks. The basic premise is very simple: the activity of a gene should be a function of the controlling genes. Thus, a gene should always show unique expression activity if the activities of the controlling genes are unique. Based on this, the maximum possible diversity of steady states is determined using only information regarding regulatory linkages without knowing the regulatory functions of genes. By extending this idea, some general properties were derived. For example, multiple loop structures in regulatory networks are necessary for increasing the diversity of gene activity. On the other hand, connected multiple loops sharing the same genes do not increase the diversity. The method was applied to a gene regulatory network responsible for early development in a sea urchin species. A set of important genes responsible for generating diversities of gene activities was derived based on the concept of compatibility of steady states. 相似文献
12.
An evolutionary model of genetic regulatory networks is developed, based on a model of network encoding and dynamics called the Artificial Genome (AG). This model derives a number of specific genes and their interactions from a string of (initially random) bases in an idealized manner analogous to that employed by natural DNA. The gene expression dynamics are determined by updating the gene network as if it were a simple Boolean network. The generic behaviour of the AG model is investigated in detail. In particular, we explore the characteristic network topologies generated by the model, their dynamical behaviours, and the typical variance of network connectivities and network structures. These properties are demonstrated to agree with a probabilistic analysis of the model, and the typical network structures generated by the model are shown to lie between those of random networks and scale-free networks in terms of their degree distribution. Evolutionary processes are simulated using a genetic algorithm, with selection acting on a range of properties from gene number and degree of connectivity through periodic behaviour to specific patterns of gene expression. The evolvability of increasingly complex patterns of gene expression is examined in detail. When a degree of redundancy is introduced, the average number of generations required to evolve given targets is reduced, but limits on evolution of complex gene expression patterns remain. In addition, cyclic gene expression patterns with periods that are multiples of shorter expression patterns are shown to be inherently easier to evolve than others. Constraints imposed by the template-matching nature of the AG model generate similar biases towards such expression patterns in networks in initial populations, in addition to the somewhat scale-free nature of these networks. The significance of these results on current understanding of biological evolution is discussed. 相似文献
13.
Smadar Ben-Tabou de-Leon 《Developmental biology》2010,344(2):1110-1118
Gene regulatory networks for animal development are the underlying mechanisms controlling cell fate specification and differentiation. The architecture of gene regulatory circuits determines their information processing properties and their developmental function. It is a major task to derive realistic network models from exceedingly advanced high throughput experimental data. Here we use mathematical modeling to study the dynamics of gene regulatory circuits to advance the ability to infer regulatory connections and logic function from experimental data. This study is guided by experimental methodologies that are commonly used to study gene regulatory networks that control cell fate specification. We study the effect of a perturbation of an input on the level of its downstream genes and compare between the cis-regulatory execution of OR and AND logics. Circuits that initiate gene activation and circuits that lock on the expression of genes are analyzed. The model improves our ability to analyze experimental data and construct from it the network topology. The model also illuminates information processing properties of gene regulatory circuits for animal development. 相似文献
14.
15.
Robustness to mutations and noise has been shown to evolve through stabilizing selection for optimal phenotypes in model gene regulatory networks. The ability to evolve robust mutants is known to depend on the network architecture. How do the dynamical properties and state-space structures of networks with high and low robustness differ? Does selection operate on the global dynamical behavior of the networks? What kind of state-space structures are favored by selection? We provide damage propagation analysis and an extensive statistical analysis of state spaces of these model networks to show that the change in their dynamical properties due to stabilizing selection for optimal phenotypes is minor. Most notably, the networks that are most robust to both mutations and noise are highly chaotic. Certain properties of chaotic networks, such as being able to produce large attractor basins, can be useful for maintaining a stable gene-expression pattern. Our findings indicate that conventional measures of stability, such as damage propagation, do not provide much information about robustness to mutations or noise in model gene regulatory networks. 相似文献
16.
17.
Transcriptional regulatory networks underlying gene expression changes in Huntington's disease
下载免费PDF全文

Jeffrey P Cantle Robert M Bragg Peter J Skene Sydney R Coffey Dani E Bergey Vanessa C Wheeler Marcy E MacDonald Nitin S Baliga Jim Rosinski Leroy E Hood Jeffrey B Carroll Nathan D Price 《Molecular systems biology》2018,14(3)
18.
19.
Based on a non-equilibrium mechanism for spatial pattern formation we study how position information can be controlled by locally coupled discrete dynamical networks, similar to gene regulation networks of cells in a developing multicellular organism. As an example we study the developmental problems of domain formation and proportion regulation in the presence of noise, as well as in the presence of cell flow. We find that networks that solve this task exhibit a hierarchical structure of information processing and are of similar complexity as developmental circuits of living cells. Proportion regulation is scalable with system size and leads to sharp, precisely localized boundaries of gene expression domains, even for large numbers of cells. A detailed analysis of noise-induced dynamics, using a mean-field approximation, shows that noise in gene expression states stabilizes (rather than disrupts) the spatial pattern in the presence of cell movements, both for stationary as well as growing systems. Finally, we discuss how this mechanism could be realized in the highly dynamic environment of growing tissues in multicellular organisms. 相似文献