首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Targeted gene replacement in plastids was used to explore whether the rbcL gene that codes for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase, the key enzyme of photosynthetic CO2 fixation, might be replaced with altered forms of the gene. Tobacco (Nicotiana tabacum) plants were transformed with plastid DNA that contained the rbcL gene from either sunflower (Helianthus annuus) or the cyanobacterium Synechococcus PCC6301, along with a selectable marker. Three stable lines of transformants were regenerated that had altered rbcL genes. Those containing the rbcL gene for cyanobacterial ribulose-1,5-bisphosphate carboxylase/oxygenase produced mRNA but no large subunit protein or enzyme activity. Those tobacco plants expressing the sunflower large subunit synthesized a catalytically active hybrid form of the enzyme composed of sunflower large subunits and tobacco small subunits. A third line expressed a chimeric sunflower/tobacco large subunit arising from homologous recombination within the rbcL gene that had properties similar to the hybrid enzyme. This study demonstrated the feasibility of using a binary system in which different forms of the rbcL gene are constructed in a bacterial host and then introduced into a vector for homologous recombination in transformed chloroplasts to produce an active, chimeric enzyme in vivo.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
The Kingdom of Saudi Arabia thrives with great plant diversity, including rare plants of the family Asphodelaceae that have multiple benefits and are still being studied. Aloe shadensis is one of these plants that must be preserved and documented in its natural environment. The most appropriate molecular approach currently approved for documentation is the sequencing of some genomic markers. The current study is the first to use genomic markers to record this rare plant. In this study, the plastid genes matK (Maturase K), rbcL (Ribulose-bisphosphate carboxylase/oxygenase large subunit), and the nuclear region ITS (Internal transcribed spacer) were used to reveal their efficiency in identifying the plant under study. This study is the first to deal with this plant and document it using these genetic markers. The study showed a promising result concerning identifying the sequence of the matK gene and ITS region, while the rbcL gene did not give a good indicator through the used primers. The obtained sequences of the matK gene and the ITS region were determined through two different sets of primers in each case then deposited in GenBank. The evolutionary relatedness of Aloe shadensis was established with the different species of Aloe. The study showed that the closest species is Aloe vera with a similarity of more than 99 %. The study concludes with the possibility of using these genes to correctly identify, distinguish and document the species of Aloe shadensis.  相似文献   

11.
The genes for the large (rbcL) and small (rbcS) subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) were cloned from a thermophilic cyanobacterium, Synechococcus sp. strain a-1. These two genes were located tandemly on the same strand of chromosomal DNA with a 467 bp spacer region. The rbcL gene codes for 474 amino acid residues (1,422 bp), and rbcS for 118 residues (354 bp). The deduced amino acid sequence for the large subunit was highly similar to those of other cyanobacteria and higher plants. The RubisCO genes were overexpressed (>30% of total soluble protein) in E. coli cells by using pKK223-3 as an expression vector. The overexpressed RubisCO formed hexademers (L8S8 form) in E. coli cells, the same form as in Synechococcus cells. The RubisCO was easily purified from E. coli cell free extract using the advantage of its high thermostability, and the purified RubisCO had almost the same characteristics as the native RubisCO purified from Synechococcus sp. strain a-1.  相似文献   

12.
13.
14.
15.
16.
17.
In order to eliminate the laborious step of DNA extraction preceding all studies within the field of plant molecular biology we attempted to do PCR amplifications directly on pollen grains. Successful PCR amplification was obtained in reactions including a single pollen grain from Hordeum vulgare or Secale strictum. Both the plastid gene encoding ribulose-1,5-biphosphate carboxylase/oxygenase (rbcL) and the nuclear-encoded internal transcribed spacer regions (ITS) and the 5.8S rDNA region were amplified and sequenced to verify PCR amplification.  相似文献   

18.
The Arabidopsis endonuclease RNase E (RNE) is localized in the chloroplast and is involved in processing of plastid ribonucleic acids (RNAs). By expression of a tandem affinity purification-tagged version of the plastid RNE in the Arabidopsis rne mutant background in combination with mass spectrometry, we identified the novel vascular plant-specific and co-regulated interaction partner of RNE, designated RHON1. RHON1 is essential for photoautotrophic growth and together with RNE forms a distinct ∼800 kDa complex. Additionally, RHON1 is part of various smaller RNA-containing complexes. RIP-chip and other association studies revealed that a helix-extended-helix-structured Rho-N motif at the C-terminus of RHON1 binds to and supports processing of specific plastid RNAs. In all respects, such as plastid RNA precursor accumulation, protein pattern, increased number and decreased size of chloroplasts and defective chloroplast development, the phenotype of rhon1 knockout mutants resembles that of rne lines. This strongly suggests that RHON1 supports RNE functions presumably by conferring sequence specificity to the endonuclease.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号