首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tyrosine phosphorylation of HSP-90 during mammalian sperm capacitation   总被引:3,自引:0,他引:3  
The process of sperm capacitation is correlated with activation of a signal transduction pathway leading to protein tyrosine phosphorylation. Whereas phosphotyrosine expression is an essential prerequisite for fertilization, the proteins that are phosphorylated during capacitation have not yet been identified. In the present study, we observed that a major target of this signaling pathway is the molecular chaperone protein, heat shock protein (HSP)-86, a member of the HSP-90 family of HSPs. We used cross-immunoprecipitation experiments to confirm the tyrosine phosphorylation of HSP-86, a process that is not inhibited by the ansamycin antibiotic, geldanamycin. The general significance of these findings was confirmed by studies in which HSP-90 was also found to be tyrosine phosphorylated in human and rat spermatozoa when incubated under conditions that support capacitation. To our knowledge, these results represent the first report of a protein that undergoes tyrosine phosphorylation during mouse sperm capacitation and the first study implicating molecular chaperones in the processes by which mammalian spermatozoa gain the ability to fertilize the oocyte.  相似文献   

2.
Under in vitro conditions, incubation with 0.3% bovine serum albumin (BSA) and 1.8 mM CaCl2 induces mouse sperm capacitation and increases the consequential acrosome-reaction. The effect of mouse uterine 24p3 protein on such stimulated sperm has been investigated to understand the biological function of the 24p3 protein. Variations in the intracellular pH (pHi), calcium concentration, cAMP levels and tyrosine phosphorylation in cytosol were determined and on in vitro mouse fertilization was evaluated. The presence of 24p3 protein reduced the response of sperm to BSA and calcium by suppressing the elevation of intracellular pH, calcium uptake, cAMP accumulation and protein tyrosine phosphorylation of BSA/calcium-stimulated sperm and showed inhibitory effect on mouse in vitro fertilization. The results indicated the inhibition of the BSA-stimulated sperm acrosome reaction by 24p3 protein then suppressed sperm fertilization. We suggested that the 24p3 protein acts as an in vitro inhibitor of the acrosome reaction in BSA stimulated sperm and this might be an anti-fertilization factor in vitro.  相似文献   

3.
Sperm sorting is a useful technology that permits sex preselection. It presents some troubles because of low fertility after the process. The main aim of this work was to analyze the putative existence of capacitation-like changes in both boar and bull sperm subjected to sex sorting that could lead to a detriment of semen quality. The parameters used were CTC staining patterns, actin cytoskeleton organization and tyrosine phosphorylation patterns; the last two were determined by both western blotting and immunofluorescence. Sex sorted spermatozoa were compared with fresh, in vitro capacitated and in vitro acrosome reacted sperm. In both species, sex sorted sperm showed a CTC staining pattern similar to that observed after in vitro capacitation. The actin pattern distribution after sperm sorting also tended to be similar to that observed after in vitro capacitation, but this effect was more pronounced in bull than in boar spermatozoa. However, actin expression analysis through western blot did not show any change in either species. The tyrosine phosphorylation pattern in boar sperm was practically unaltered after the sex sorting process, but in bulls about 40% of spermatozoa had a staining pattern indicative of capacitation. Additionally, western blotting analysis evidenced some differences in the expression of protein tyrosine phosphorylation among fresh, capacitated, acrosome reacted and sex sorted sperm cells in both species. Our results indicate that not all the sex-sorted-related modifications of the studied parameters were similar to those occurring after “in vitro” capacitation, thus suggesting that sex sorting-induced alterations of sperm function and structure do not necessarily indicate the achievement of the capacitated status of sorted sperm.  相似文献   

4.
A key intracellular event during capacitation is protein tyrosine phosphorylation, but its involvement during sperm interaction with the oocyte has not been investigated. Glucose is necessary to achieve fertilization and thus may have an influence on sperm protein tyrosine phosphorylation. The objectives of this study were to 1) visualize protein tyrosine phosphorylation patterns in sperm during capacitation and interaction with the oocyte and 2) determine the influence of glucose. Protein tyrosine phosphorylation was investigated by Western analysis and immunofluorescence. Protein tyrosine phosphorylation was increased during capacitation, and immunofluorescence revealed that zona binding and gamete fusion were correlated with an increase in tyrosine phosphorylation of proteins in the midpiece. During capacitation, the absence of glucose led to a delay in the appearance of protein tyrosine phosphorylation. Following binding to the zona pellucida and the oolemma, tyrosine phosphorylation in the flagellum was also delayed in the absence of glucose and resulted in a significant inhibition of the midpiece phosphorylation. The correlation between successful gamete fusion and the tyrosine phosphorylation of midpiece proteins suggests that the effect of glucose on sperm-oocyte interaction is mediated through regulation of protein tyrosine phosphorylation in a specific area of the fertilizing sperm.  相似文献   

5.
Mammalian sperm capacitation is the obligatory maturational process leading to the development of the fertilization-competent state. Heparin is known to be a unique species-specific inducer of bovine sperm capacitation in vitro and glucose a unique inhibitor of this induction. Heparin-induced capacitation of bovine sperm has been shown to correlate with protein kinase A (PKA)-dependent protein tyrosine phosphorylation driven by an increase in intracellular cAMP. This study examines the possible roles of cyclic nucleotide phosphodiesterase (PDE) activity and intracellular alkalinization on bovine sperm capacitation and the protein tyrosine phosphorylation associated with it. Measurement of whole cell PDE kinetics during capacitation reveals neither a substantial change with heparin nor one with glucose: PDE activity is effectively constitutive in maintaining intracellular cAMP levels during capacitation. In contrast to a transient increase in intracellular pH, a sustained increase in medium pH by switching from 5% CO(2)/95% air incubation to 1% CO(2)/99% air incubation over 4 hr in the absence of heparin resulted in an increase in protein tyrosine phosphorylation and in the extent of induced acrosome reaction comparable to that observed following heparin-induced capacitation in 5% CO(2). These results suggest that increased bicarbonate-dependent adenylyl cyclase activity, driven by alkalinization, increases intracellular cAMP and so increases PKA activity mediating protein tyrosine phosphorylation. Quantitative analysis of the lactic acid production rate by bovine sperm glycolysis accounts fully for intracellular acidification sufficient to offset heparin-induced alkalinization, thus inhibiting capacitation. The mechanism by which heparin uniquely induces intracellular alkalinization in bovine sperm leading to capacitation remains obscure, inviting future investigation.  相似文献   

6.
获能期间精子蛋白的酪氨酸磷酸化   总被引:2,自引:0,他引:2  
周思畅  倪崖  石其贤 《生命科学》2006,18(3):285-289
哺乳动物精了获能是精子与卵子成功受精的前提。蛋白酪氨酸磷酸化对精子获能十分重要。精了获能期蛋白酪氨酸磷酸化程度增高与sAC/cAMP/PKA途径、受体酪氨酸激酶途径和非受体蛋白酪氨酸激酶途径调节有关。获能过程中酪氨酸磷酸化蛋白分布于精子细胞的不同区域,蛋白的酪氨酸磷酸化与精子功能密切相关。  相似文献   

7.
Efficient in vitro capacitation of stallion sperm has not yet been achieved, as suggested by low sperm penetration rates reported in in vitro fertilization (IVF) studies. Our objectives were to evaluate defined incubation conditions that would support changes consistent with capacitation in stallion sperm. Protein tyrosine phosphorylation events and the ability of sperm to undergo acrosomal exocytosis under various incubation conditions were used as end points for capacitation. Sperm incubated 4-6h in modified Whitten's (MW) with the addition of 25 mM NaHCO3 and 7 mg/mL BSA (capacitating medium) yielded high rates of protein tyrosine phosphorylation. Either HCO3(-) or BSA was required to support these changes, with the combination of both providing the most intense results. When a membrane-permeable form of cAMP and a phosphodiesterase inhibitor (IBMX) were added to MW in the absence of HCO3(-) and BSA, the tyrosine phosphorylation results obtained in our capacitating conditions could not be replicated, suggesting either effects apart from cAMP were responsible for tyrosine phosphorylation, or that stallion sperm might respond differently to these reagents as compared to sperm from other mammals. Sperm incubation in capacitating conditions was also associated with high percentages (P相似文献   

8.
Capacitation is the prerequisite process for sperm to gain the ability for successful fertilization. Unregulated capacitation will cause sperm to undergo a spontaneous acrosome reaction and then fail to fertilize an egg. Seminal plasma is thought to have the ability to suppress sperm capacitation. However, the mechanisms by which seminal proteins suppress capacitation have not been well understood. Recently, we demonstrated that a major seminal vesicle secretory protein, seminal vesicle autoantigen (SVA), is able to suppress bovine serum albumin (BSA)-induced mouse sperm capacitation. To further identify the mechanism of SVA action, we determine the molecular events associated with SVA suppression of BSA's activity. In this communication, we demonstrate that SVA suppresses the BSA-induced increase of intracellular calcium concentration ([Ca2+]i), intracellular pH (pH(i)), the cAMP level, PKA activity, protein tyrosine phosphorylation, and capacitation in mouse sperm. Besides, we also found that the suppression ability of SVA against BSA-induced protein tyrosine phosphorylation and capacitation could be reversed by dbcAMP (a cAMP agonist).  相似文献   

9.
Mammalian sperm must undergo a process known as capacitation before fertilization can take place. A key intracellular event that occurs during capacitation is protein tyrosine phosphorylation. The objective of this study was to investigate and visualize protein tyrosine phosphorylation patterns in human sperm during capacitation and interaction with the zona pellucida. The presence of specific patterns was also assessed in relation to the fertilizing capacity of the spermatozoa after in vitro fertilization. Protein tyrosine phosphorylation was investigated by immunofluorescence. Phosphorylation increased significantly with capacitation and was localized mainly to the principal piece of human sperm. Following binding to the zona pellucida, the percentage of sperm with phosphotyrosine residues localized to both the neck and the principal piece was significantly higher in bound sperm than in capacitated sperm in suspension. When the percentage of principal piece-positive sperm present after capacitation was <7%, fertilization rates after in vitro fertilization were reduced. Different compartments of human spermatozoa undergo a specific sequence of phosphorylation during both capacitation and upon binding to the zona pellucida. Tyrosine phosphorylation in the principal and neck piece may be considered a prerequisite for fertilization in humans.  相似文献   

10.
To reach fertilization competence, sperm undergo an incompletely understood series of morphological and molecular maturational processes, termed capacitation, involving, among other processes, protein tyrosine phosphorylation and increased intracellular calcium. Hyperactivated motility and an ability to undergo the acrosome reaction serve as physiological end points to assess successful capacitation. We report here that acidic (pI 4.0) 86-kDa isoforms of a novel, polymorphic, testis-specific protein, designated calcium-binding tyrosine phosphorylation-regulated protein (CABYR), were tyrosine phosphorylated during in vitro capacitation and bound (45)Ca on 2D gels. Acidic 86-kDa calcium-binding forms of CABYR increased during in vitro capacitation, and calcium binding to these acidic forms was abolished by dephosphorylation with alkaline phosphatase. Six variants of CABYR containing two coding regions (CR-A and CR-B) were cloned from human testis cDNA libraries, including five variants with alternative splice deletions. A motif homologous to the RII dimerization domain of PK-A was present in the N-terminus of CR-A in four CABYR variants. A single putative EF handlike motif was noted in CR-A at aas 197-209, while seven potential tyrosine phosphorylation-like sites were noted in CR-A and four in CR-B. Pro-X-X-Pro (PXXP) modules were identified in the N- and C-termini of CR-A and CR-B. CABYR localizes to the principal piece of the human sperm flagellum in association with the fibrous sheath and is the first demonstration of a sperm protein that gains calcium-binding capacity when phosphorylated during capacitation.  相似文献   

11.
12.
Mammalian sperm must undergo a physiological maturation, termed capacitation, before they are able to fertilize eggs. Despite its importance, the molecular mechanisms underlying capacitation are poorly understood. In this paper, we describe the capacitation phenotype of sperm lacking the long isoform of beta1,4-galactosyltransferase I (GalT I), a sperm surface protein that functions as a receptor for the zona pellucida glycoprotein, ZP3, and as an inducer of the acrosome reaction following ZP3-dependent aggregation. As expected, wild-type sperm must undergo capacitation in order to bind the zona pellucida and undergo a Ca(2+) ionophore-induced acrosome reaction. By contrast, GalT I-null sperm behave as though they are precociously capacitated, in that they demonstrate maximal binding to the zona pellucida and greatly increased sensitivity to ionophore-induced acrosome reactions without undergoing capacitation in vitro. The loss of GalT I from sperm results in an inability to bind epididymal glycoconjugates that normally maintain sperm in an 'uncapacitated' state; removing these decapacitating factors from wild-type sperm phenocopies the capacitation behavior of GalT I-null sperm. Interestingly, capacitation of GalT I-null sperm is independent of the presence of albumin, Ca(2+) and HCO(3)(-); three co-factors normally required by wild-type sperm to achieve capacitation. This implies that intracellular targets of albumin, Ca(2+) and/or HCO(3)(-) may be constitutively active in GalT I-null sperm. Consistent with this, GalT I-null sperm have increased levels of cAMP that correlate closely with both the accelerated kinetics and co-factor-independence of GalT I-null sperm capacitation. By contrast, the kinetics of protein tyrosine phosphorylation and sperm motility are unaltered in mutant sperm relative to wild-type. These data suggest that GalT I may function as a negative regulator of capacitation in the sperm head by suppressing intracellular signaling pathways that promote this process.  相似文献   

13.
Potassium channels play essential roles in the regulation of male fertility. However, potassium channels mediating K+ currents in human sperm (IKSper) remain controversial. Besides SLO3, the SLO1 potassium channel is a potential candidate for human sperm KSper. This study intends to elucidate the function of SLO1 potassium channel during human sperm capacitation. Human sperm were treated with iberiotoxin (IbTX, a SLO1 specific inhibitor) and clofilium (SLO3 inhibitor) separately or simultaneously during in vitro capacitation. A computer-assisted sperm analyzer was used to assess sperm motility. The sperm acrosome reaction (AR) was analyzed using fluorescein isothiocyanate-conjugated Pisum sativum agglutinin staining. Sperm protein tyrosine phosphorylation was studied using western blotting. Intracellular Ca2+, K+, Cl, and pH were analyzed using ion fluorescence probes. Independent inhibition with IbTX or clofilium decreased the sperm hyperactivation, AR, and protein tyrosine phosphorylation, and was accompanied by an increase in [K+]i, [Cl]i, and pHi, but a decrease in [Ca2+]i. Simultaneously inhibition with IbTX and clofilium lower sperm hyperactivation and AR more than independent inhibition. The increase in [K+]i, [Cl]i, and pHi, and the decrease in [Ca2+]i were more pronounced. This study suggested that the SLO1 potassium channel may have synergic roles with SLO3 during human sperm capacitation.  相似文献   

14.
Capacitation (activation) of mammalian spermatozoa is accompanied by protein phosphorylation, elevation of the intracellular calcium concentration and an increased plasma membrane fluidity. The subcellular localization of tyrosine phosphorylation during capacitation have not yet been elucidated. The aim of this study was to investigate whether boar sperm capacitation induces tyrosine phosphorylation of plasma membrane proteins. Capacitation induced tyrosine phosphorylation of 3 proteins (27, 37, and 40 kDa), which coincided with an increase in the plasma membrane fluidity. The importance of the induced tyrosine phosphorylation in sperm binding to the zona pellucida and the induction of the acrosome reaction is discussed.  相似文献   

15.
Phosphorylation of tyrosine residues on sperm proteins is one important intracellular mechanism regulating sperm function that may be a meaningful indicator of capacitation. There is substantial evidence that cryopreservation promotes the capacitation of sperm and this cryocapacitation is frequently cited as one factor associated with the reduced longevity of cryopreserved sperm in the female reproductive tract. This study was designed to determine whether stallion sperm express different levels of tyrosine phosphorylation after in vitro capacitation and whether thawed sperm display similar phosphorylation characteristics in comparison with freshly ejaculated sperm. Experiments were performed to facilitate comparisons of tyrosine phosphorylation, motility, and viability of sperm prior to and following in vitro capacitation in fresh and frozen-thawed sperm. We hypothesized that equine spermatozoa undergo tyrosine phosphorylation during capacitation and that this phosphorylation is modified when sperm have been cryopreserved. We also hypothesized that tyrosine phosphorylation could be enhanced by the use of the activators dibutyryl cAMP (db cAMP) and caffeine, as well as methyl beta-cyclodextrin-which causes cholesterol efflux from the spermatozoa-and inhibited by the protein kinase A (PK-A) inhibitor H-89. Our results indicate that equine sperm capacitation is mediated by a signaling pathway that involves cAMP-dependent PK-A and tyrosine kinases and that cryopreserved sperm may be more sensitive to inducers of capacitation, which could explain their limited life span when compared with fresh sperm.  相似文献   

16.
获能是精子发生顶体反应以及与卵子结合之前所必需的生理过程.研究发现在精子获能过程中伴随有蛋白质的磷酸化特别是酪氨酸的磷酸化.主要对酪氨酸磷酸化蛋白在精子获能过程中的作用及其存在的部位进行归纳总结,为进一步阐明精子获能分子机制奠定基础.  相似文献   

17.
Protein tyrosine phosphorylation is a key event accompanying sperm capacitation. Although this signaling cascade generates an array of tyrosine-phosphorylated polypeptides, their molecular characterization is still limited. It is necessary to differentiate the localization of the tyrosine-phosphorylated proteins in spermatozoa to understand the link between the different phosphorylated proteins and the corresponding regulated sperm function. cAMP plays a pivotal role in the regulation of tyrosine phosphorylation. The intracellular cAMP levels were raised in goat spermatozoa by the addition of the phosphodiesterase inhibitor, IBMX in conjugation with caffeine. Tyrosine phosphorylation was significantly up-regulated following treatment with these two reagents. Treatment of caudal spermatozoa with IBMX and caffeine, time dependent up-regulated phosphorylation of the protein of molecular weights 50 and 200 kDa was observed. Increased phosphorylation was observed with a combination of IBMX and caffeine treatment. Tyrosine phosphorylation in caput spermatozoa was not affected significantly under these conditions. The expression level of tyrosine kinase in sperm was examined with specific inhibitors and with anti-phosphotyrosine antibody. The indirect immunofluorescence staining was carried out on ethanol permeabilized sperm using anti-phosphotyrosine antibody. Western blot analysis was done using two separate PKA antibodies: anti-PKA catalytic and anti-PKA RIα. Almost no difference was found in the intracellular presence of the PKA RIα and RIIα subunits in caput and caudal epididymal spermatozoa. However, the catalytic subunit seemed to be present in higher amount in caudal spermatozoa. The results show that caprine sperm displays an enhancement of phosphorylation in the tyrosine residues of specific proteins under in vitro capacitation conditions.  相似文献   

18.
Before fertilization can occur, mammalian sperm must undergo capacitation, a process that requires a cyclic AMP-dependent increase in tyrosine phosphorylation. To identify proteins phosphorylated during capacitation, two-dimensional gel analysis coupled to anti-phosphotyrosine immunoblots and tandem mass spectrometry (MS/MS) was performed. Among the protein targets, valosin-containing protein (VCP), a homolog of the SNARE-interacting protein NSF, and two members of the A kinase-anchoring protein (AKAP) family were found to be tyrosine phosphorylated during capacitation. In addition, immobilized metal affinity chromatography was used to investigate phosphorylation sites in whole protein digests from capacitated human sperm. To increase this chromatographic selectivity for phosphopeptides, acidic residues in peptide digests were converted to their respective methyl esters before affinity chromatography. More than 60 phosphorylated sequences were then mapped by MS/MS, including precise sites of tyrosine and serine phosphorylation of the sperm tail proteins AKAP-3 and AKAP-4. Moreover, differential isotopic labeling was developed to quantify phosphorylation changes occurring during capacitation. The phosphopeptide enrichment and quantification methodology coupled to MS/MS, described here for the first time, can be employed to map and compare phosphorylation sites involved in multiple cellular processes. Although we were unable to determine the exact site of phosphorylation of VCP, we did confirm, using a cross-immunoprecipitation approach, that this protein is tyrosine phosphorylated during capacitation. Immunolocalization of VCP showed fluorescent staining in the neck of noncapacitated sperm. However, after capacitation, staining in the neck decreased, and most of the sperm showed fluorescent staining in the anterior head.  相似文献   

19.
Porcine sperm are extremely sensitive to the damaging effects of cold shock. It has been shown that cholesterol-binding molecules, such as 2-hydroxypropyl-beta-cyclodextrin (HBCD), improve post-cooling porcine sperm viability when added to an egg yolk-based extender, but also enhance sperm capacitation in other species. The objective of this study was to determine the effects of HBCD and cholesterol 3-sulfate (ChS) on porcine sperm viability and capacitation following cold shock or incubation under conditions that support capacitation using a defined medium. We report here that porcine sperm incubated in medium containing both HBCD and ChS have significantly improved viability following cold shock (10 min at 10 degrees C) when compared to sperm incubated without HBCD or ChS, or with either component alone. Treatment with HBCD plus ChS also completely inhibited the increase in protein tyrosine phosphorylation induced by the cold shock treatment or by incubation for 3 hr under conditions that support capacitation. Two assays of sperm capacitation, the rate of calcium ionophore-induced acrosome reactions and chlortetracycline (CTC) staining, were not significantly altered by HBCD and ChS following cold shock. However, 3-hr incubation with HBCD plus ChS or with 1 mM ChS alone decreased the percentage of sperm undergoing the induced acrosome reaction without significantly affecting viability when compared to the control. These results indicate that the manipulation of sperm plasma membrane cholesterol content affects porcine sperm viability and capacitation status and could therefore be useful to protect sperm from cold shock during cryopreservation by improving viability without promoting premature capacitation.  相似文献   

20.
Spermatozoa require a preparatory process called capacitation to fertilize mature oocytes. Two events related to capacitation of mammalian spermatozoa are an increase in intracellular Ca(2+) and protein tyrosine phosphorylation. The sites that regulate intracellular Ca(2+) concentration are plasma membrane and mitochondria. There are different systems for mitochondrial Ca(2+) influx and efflux. Our aim was to study the involvement of mitochondrial Ca(2+) cycle during heparin-induced capacitation in cryopreserved bovine spermatozoa. Samples were incubated at 38°C for 45 min, in TALP medium, in the presence of: (a) heparin (H), a well known capacitation inducer; (b) H+CGP 37157, a specific inhibitor of mitochondrial Ca(2+) efflux; (c) H+RU 360, a specific inhibitor of Ca(2+) influx to the mitochondria and (d) H+CGP 37157+RU 360. In every treatment, capacitation (by CTC), progressive motility (by optical microscopy), viability (by the eosin/nigrosin technique) and protein tyrosine phosphorylation (by Western Immuno-blotting), were evaluated. The addition of CGP 37157 (20 μM) decreased progressive motility (p<0.05), without affecting capacitation or protein tyrosine phosphorylation, indicating the importance of calcium efflux for maintaining progressive motility. RU 360 (5 μM) significantly reduced capacitation without affecting progressive motility, sperm viability or protein tyrosine phosphorylation, showing that inhibition of the mitochondrial calcium uptake, negatively affect the capacitation process. The addition of both inhibitors showed the effect of RU 360. According with these results, there would exist a differential participation of the income and outcome mitochondrial calcium carriers, in the capacitation process. In conclusion, this research demonstrates the importance of normal mitochondrial calcium cycle in the achievement of sperm capacitation and the maintenance of progressive motility in cryopreserved bovine spermatozoa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号