首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
2.

Background

Vitis vinifera (grape) is one of the most economically significant fruit crops in the world. The availability of the recently released grape genome sequence offers an opportunity to identify and analyze some important gene families in this species. Subtilases are a group of subtilisin-like serine proteases that are involved in many biological processes in plants. However, no comprehensive study incorporating phylogeny, chromosomal location and gene duplication, gene organization, functional divergence, selective pressure and expression profiling has been reported so far for the grape.

Results

In the present study, a comprehensive analysis of the subtilase gene family in V. vinifera was performed. Eighty subtilase genes were identified. Phylogenetic analyses indicated that these subtilase genes comprised eight groups. The gene organization is considerably conserved among the groups. Distribution of the subtilase genes is non-random across the chromosomes. A high proportion of these genes are preferentially clustered, indicating that tandem duplications may have contributed significantly to the expansion of the subtilase gene family. Analyses of divergence and adaptive evolution show that while purifying selection may have been the main force driving the evolution of grape subtilases, some of the critical sites responsible for the divergence may have been under positive selection. Further analyses of real-time PCR data suggested that many subtilase genes might be important in the stress response and functional development of plants.

Conclusions

Tandem duplications as well as purifying and positive selections have contributed to the functional divergence of subtilase genes in V. vinifera. The data may contribute to a better understanding of the grape subtilase gene family.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1116) contains supplementary material, which is available to authorized users.  相似文献   

3.
4.
5.
In both plants and animals, programmed cell death (PCD) is an indispensable process that removes redundant cells. In seedless grapes (Vitis vinifera), abnormal PCD in ovule cells and subsequent ovule abortion play key roles in stenospermocarpy. Metacaspase, a type of cysteine-dependent protease, plays an essential role in PCD. To reveal the characteristics of the metacaspase (MC) gene family and the relationship between metacaspases and the seedless trait, we identified the 6 V. vinifera metacaspases VvMC1VvMC6, from the grape genome, using BLASTN against the 9 known Arabidopsis metacaspases. We also obtained full-length cDNAs by RT-PCR. Each of the 6 grape metacaspases contains small (p10-like) and a large (p20-like) conserved structural domains. Phylogenetic analysis of 6 grape and 9 Arabidopsis metacaspases showed that all metacaspases could be grouped into two classes: Type I and Type II. Each phylogenetic branch shares a similar exon/intron structure. Furthermore, the putative promoters of the grape metacaspases contained cis-elements that are involved in grape endosperm development. Moreover, expression analysis of metacaspases using real-time quantitative PCR demonstrated that VvMC1 and VvMC2 were able to be detected in any tissue, and VvMC3, VvMC4, VvMC5 and VvMC6 exhibited tissue-specific expression. Lastly, in cv. Thompson seedless grapes VvMC1, VvMC3, and VvMC4 were significantly up-regulated at the 35 DAF during ovule development, roughly same stage as endosperm abortion. In addition, the expression trend of VvMC2 and VvMC5 was similar between cv. Pinot Noir and cv. Thompson grape ovule development and that of VvMC6 was sustained in a relatively low level except the expression of cv. Pinot Noir significantly up-regulated in 25 DAF. Our data provided new insights into PCD by identifying the grape metacaspase gene family and provide a useful reference for further functional analysis of metacaspases in grape.  相似文献   

6.
7.
8.
9.
10.
11.
An mRNA differential display (DD) analysis during rooting in grape cuttings was carried out to determine whether gene expression patterns differed under in vitro and ex vitro conditions. The four tissue samples for differential display and subsequent Northern hybridization analyses included control stem tissue from in vitro and ex vitro sources, microcuttings planted in MS based in vitro rooting medium and softwood cuttings planted in ex vitro soil medium, both collected 48 h after planting. DD autoradiographs showed gross similarity in banding pattern between in vitro and ex vitro stem tissue, whether constitutive or induced. Northern blot analysis of a few bands that appeared to be differentials did not indicate them as true positives. The results suggested that gene expression pattern during physiological processes such as rooting may be identical under in vitro and ex vitro conditions.  相似文献   

12.
13.
14.
Somatic embryogenesis involves different molecular events including differential gene expression and various signal transduction pathways. One of the genes identified in early somatic embryogenesis is S OMATIC E MBRYOGENESIS R ECEPTOR-like K INASE (SERK). Cocos nucifera (L.) is one of the most recalcitrant species for in vitro regeneration, achieved so far only through somatic embryogenesis, although just a few embryos could be obtained from a single explant. In order to increase efficiency of this process we need to understand it better. Therefore, the purpose of the present work was to determine if an ortholog of the SERK gene is present in the coconut genome, isolate it and analyze its expression during somatic embryogenesis. The results showed the occurrence of a SERK ortholog referred to as CnSERK. Predicted sequence analysis showed that CnSERK encodes a SERK protein with the domains reported in the SERK proteins in other species. These domains consist of a signal peptide, a leucine zipper domain, five LRR, the Serine-Proline-Proline domain, which is a distinctive domain of the SERK proteins, a single transmembrane domain, the kinase domain with 11 subdomains and the C terminal region. Analysis of its expression showed that it could be detected in embryogenic tissues before embryo development could be observed. In contrast it was not detected or at lower levels in non-embryogenic tissues, thus suggesting that CnSERK expression is associated with induction of somatic embryogenesis and that it could be a potential marker of cells competent to form somatic embryos in coconut tissues cultured in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号