首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
To date, few studies are conducted to quantify the effects of reduced ammonium (NH4 +) and oxidized nitrate (NO3 ) on soil CH4 uptake and N2O emission in the subtropical forests. In this study, NH4Cl and NaNO3 fertilizers were applied at three rates: 0, 40 and 120 kg N ha−1 yr−1. Soil CH4 and N2O fluxes were determined twice a week using the static chamber technique and gas chromatography. Soil temperature and moisture were simultaneously measured. Soil dissolved N concentration in 0–20 cm depth was measured weekly to examine the regulation to soil CH4 and N2O fluxes. Our results showed that one year of N addition did not affect soil temperature, soil moisture, soil total dissolved N (TDN) and NH4 +-N concentrations, but high levels of applied NH4Cl and NaNO3 fertilizers significantly increased soil NO3 -N concentration by 124% and 157%, respectively. Nitrogen addition tended to inhibit soil CH4 uptake, but significantly promoted soil N2O emission by 403% to 762%. Furthermore, NH4 +-N fertilizer application had a stronger inhibition to soil CH4 uptake and a stronger promotion to soil N2O emission than NO3 -N application. Also, both soil CH4 and N2O fluxes were driven by soil temperature and moisture, but soil inorganic N availability was a key integrator of soil CH4 uptake and N2O emission. These results suggest that the subtropical plantation soil sensitively responses to atmospheric N deposition, and inorganic N rather than organic N is the regulator to soil CH4 uptake and N2O emission.  相似文献   

2.
Global nitrogen fixation contributes 413 Tg of reactive nitrogen (Nr) to terrestrial and marine ecosystems annually of which anthropogenic activities are responsible for half, 210 Tg N. The majority of the transformations of anthropogenic Nr are on land (240 Tg N yr−1) within soils and vegetation where reduced Nr contributes most of the input through the use of fertilizer nitrogen in agriculture. Leakages from the use of fertilizer Nr contribute to nitrate (NO3) in drainage waters from agricultural land and emissions of trace Nr compounds to the atmosphere. Emissions, mainly of ammonia (NH3) from land together with combustion related emissions of nitrogen oxides (NOx), contribute 100 Tg N yr−1 to the atmosphere, which are transported between countries and processed within the atmosphere, generating secondary pollutants, including ozone and other photochemical oxidants and aerosols, especially ammonium nitrate (NH4NO3) and ammonium sulfate (NH4)2SO4. Leaching and riverine transport of NO3 contribute 40–70 Tg N yr−1 to coastal waters and the open ocean, which together with the 30 Tg input to oceans from atmospheric deposition combine with marine biological nitrogen fixation (140 Tg N yr−1) to double the ocean processing of Nr. Some of the marine Nr is buried in sediments, the remainder being denitrified back to the atmosphere as N2 or N2O. The marine processing is of a similar magnitude to that in terrestrial soils and vegetation, but has a larger fraction of natural origin. The lifetime of Nr in the atmosphere, with the exception of N2O, is only a few weeks, while in terrestrial ecosystems, with the exception of peatlands (where it can be 102–103 years), the lifetime is a few decades. In the ocean, the lifetime of Nr is less well known but seems to be longer than in terrestrial ecosystems and may represent an important long-term source of N2O that will respond very slowly to control measures on the sources of Nr from which it is produced.  相似文献   

3.
Macroalgae has bloomed in the brackish lake of Shenzhen Bay, China continuously from 2010 to 2014. Gracilaria tenuistipitata was identified as the causative macroalgal species. The aim of this study was to explore the outbreak mechanism of G. tenuistipitata, by studying the effects of salinity and nitrogen sources on growth, and the different nitrogen sources uptake characteristic. Our experimental design was based on environmental conditions observed in the bloom areas, and these main factors were simulated in the laboratory. Results showed that salinity 12 to 20 ‰ was suitable for G. tenuistipitata growth. When the nitrogen sources'' (NH4 +, NO3 ) concentrations reached 40 µM or above, the growth rate of G. tenuistipitata was significantly higher. Algal biomass was higher (approximately 1.4 times) when cultured with NH4 + than that with NO3 addition. Coincidentally, macroalgal bloom formed during times of moderate salinity (∼12 ‰) and high nitrogen conditions. The NH4 + and NO3 uptake characteristic was studied to understand the potential mechanism of G. tenuistipitata bloom. NH4 + uptake was best described by a linear, rate-unsaturated response, with the slope decreasing with time intervals. In contrast, NO3 uptake followed a rate-saturating mechanism best described by the Michaelis-Menten model, with kinetic parameters Vmax = 37.2 µM g−1 DM h−1 and Ks = 61.5 µM. Further, based on the isotope 15N tracer method, we found that 15N from NH4 + accumulated faster and reached an atom% twice than that of 15N from NO3 , suggesting when both NH4 + and NO3 were available, NH4 + was assimilated more rapidly. The results of the present study indicate that in the estuarine environment, the combination of moderate salinity with high ammonium may stimulate bloom formation.  相似文献   

4.
Aquaspirillum magnetotacticum MS-1 grew microaerobically but not anaerobically with NO3 or NH4+ as the sole nitrogen source. Nevertheless, cell yields varied directly with NO3 concentration under microaerobic conditions. Products of NO3 reduction included NH4+, N2O, NO, and N2. NO2 and NH2OH, each toxic to cells at 0.2 mM, were not detected as products of cells growing on NO3. NO3 reduction to NH4+ was completely repressed by the addition of 2 mM NH4+ to the growth medium, whereas NO3 reduction to N2O or to N2 was not. C2H2 completely inhibited N2O reduction to N2 by growing cells. These results indicate that A. magnetotacticum is a microaerophilic denitrifier that is versatile in its nitrogen metabolism, concomitantly reducing NO3 by assimilatory and dissimilatory means. This bacterium appears to be the first described denitrifier with an absolute requirement for O2. The process of NO3 reduction appears well adapted for avoiding accumulation of several nitrogenous intermediates that are toxic to cells.  相似文献   

5.
Arid areas play a significant role in the global nitrogen cycle. Dry and wet deposition of inorganic nitrogen (N) species were monitored at one urban (SDS) and one suburban (TFS) site at Urumqi in a semi-arid region of central Asia. Atmospheric concentrations of NH3, NO2, HNO3, particulate ammonium and nitrate (pNH4 + and pNO3 ) concentrations and NH4-N and NO3-N concentrations in precipitation showed large monthly variations and averaged 7.1, 26.6, 2.4, 6.6, 2.7 µg N m−3 and 1.3, 1.0 mg N L−1 at both SDS and TFS. Nitrogen dry deposition fluxes were 40.7 and 36.0 kg N ha−1 yr−1 while wet deposition of N fluxes were 6.0 and 8.8 kg N ha−1 yr−1 at SDS and TFS, respectively. Total N deposition averaged 45.8 kg N ha−1 yr−1at both sites. Our results indicate that N dry deposition has been a major part of total N deposition (83.8% on average) in an arid region of central Asia. Such high N deposition implies heavy environmental pollution and an important nutrient resource in arid regions.  相似文献   

6.
The effect of phosphate (PO4 +3) and pH in regulating nitrate (NO3) and ammonia (NH3 +) uptake by phytoplankton was investigated in two Oklahoma lakes using 15N tracers. Addition of PO4 +3 above ambient concentrations had a negligible effect on the rate of uptake of NO3 or NH3 +. Manipulation of pH of lake water had little effect on uptake of either NO3 or NH3 +. A correlation analysis suggested that NO3 is not used by phytoplankton when NH3 + concentrations exceed about 210 µg NH3 +-N(1)–1.  相似文献   

7.
Biological N2 fixation is the dominant supply of new nitrogen (N) to the oceans, but is often inhibited in the presence of fixed N sources such as nitrate (NO3 ). Anthropogenic fixed N inputs to the ocean are increasing, but their effect on marine N2 fixation is uncertain. Thus, global estimates of new oceanic N depend on a fundamental understanding of factors that modulate N source preferences by N2-fixing cyanobacteria. We examined the unicellular diazotroph Crocosphaera watsonii (strain WH0003) to determine how the light-limited growth rate influences the inhibitory effects of fixed N on N2 fixation. When growth (µ) was limited by low light (µ = 0.23 d−1), short-term experiments indicated that 0.4 µM NH4 + reduced N2-fixation by ∼90% relative to controls without added NH4 +. In fast-growing, high-light-acclimated cultures (µ = 0.68 d−1), 2.0 µM NH4 + was needed to achieve the same effect. In long-term exposures to NO3 , inhibition of N2 fixation also varied with growth rate. In high-light-acclimated, fast-growing cultures, NO3 did not inhibit N2-fixation rates in comparison with cultures growing on N2 alone. Instead NO3 supported even faster growth, indicating that the cellular assimilation rate of N2 alone (i.e. dinitrogen reduction) could not support the light-specific maximum growth rate of Crocosphaera. When growth was severely light-limited, NO3 did not support faster growth rates but instead inhibited N2-fixation rates by 55% relative to controls. These data rest on the basic tenet that light energy is the driver of photoautotrophic growth while various nutrient substrates serve as supports. Our findings provide a novel conceptual framework to examine interactions between N source preferences and predict degrees of inhibition of N2 fixation by fixed N sources based on the growth rate as controlled by light.  相似文献   

8.
Biochar produced by pyrolysis of biomass can be used to counter nitrogen (N) pollution. The present study investigated the effects of feedstock and temperature on characteristics of biochars and their adsorption ability for ammonium N (NH4 +-N) and nitrate N (NO3 -N). Twelve biochars were produced from wheat-straw (W-BC), corn-straw (C-BC) and peanut-shell (P-BC) at pyrolysis temperatures of 400, 500, 600 and 700°C. Biochar physical and chemical properties were determined and the biochars were used for N sorption experiments. The results showed that biochar yield and contents of N, hydrogen and oxygen decreased as pyrolysis temperature increased from 400°C to 700°C, whereas contents of ash, pH and carbon increased with greater pyrolysis temperature. All biochars could sorb substantial amounts of NH4 +-N, and the sorption characteristics were well fitted to the Freundlich isotherm model. The ability of biochars to adsorb NH4 +-N followed: C-BC>P-BC>W-BC, and the adsorption amount decreased with higher pyrolysis temperature. The ability of C-BC to sorb NH4 +-N was the highest because it had the largest cation exchange capacity (CEC) among all biochars (e.g., C-BC400 with a CEC of 38.3 cmol kg−1 adsorbed 2.3 mg NH4 +-N g−1 in solutions with 50 mg NH4 + L−1). Compared with NH4 +-N, none of NO3 -N was adsorbed to biochars at different NO3 concentrations. Instead, some NO3 -N was even released from the biochar materials. We conclude that biochars can be used under conditions where NH4 +-N (or NH3) pollution is a concern, but further research is needed in terms of applying biochars to reduce NO3 -N pollution.  相似文献   

9.
The present lab-scale research reveals the potential of implementation of an oxygen-limited autotrophic nitrification-denitrification (OLAND) system with normal nitrifying sludge as the biocatalyst for the removal of nitrogen from nitrogen-rich wastewater in one step. In a sequential batch reactor, synthetic wastewater containing 1 g of NH4+-N liter−1 and minerals was treated. Oxygen supply to the reactor was double-controlled with a pH controller and a timer. At a volumetric loading rate (Bv) of 0.13 g of NH4+-N liter−1 day−1, about 22% of the fed NH4+-N was converted to NO2-N or NO3-N, 38% remained as NH4+-N, and the other 40% was removed mainly as N2. The specific removal rate of nitrogen was on the order of 50 mg of N liter−1 day−1, corresponding to 16 mg of N g of volatile suspended solids−1 day−1. The microorganisms which catalyzed the OLAND process are assumed to be normal nitrifiers dominated by ammonium oxidizers. The loss of nitrogen in the OLAND system is presumed to occur via the oxidation of NH4+ to N2 with NO2 as the electron acceptor. Hydroxylamine stimulated the removal of NH4+ and NO2. Hydroxylamine oxidoreductase (HAO) or an HAO-related enzyme might be responsible for the loss of nitrogen.  相似文献   

10.
The influence of NH4+, in the external medium, on fluxes of NO3 and K+ were investigated using barley (Hordeum vulgare cv Betzes) plants. NH4+ was without effect on NO3 (36ClO3) influx whereas inhibition of net uptake appeared to be a function of previous NO3 provision. Plants grown at 10 micromolar NO3 were sensitive to external NH4+ when uptake was measured in 100 micromolar NO3. By contrast, NO3 uptake (from 100 micromolar NO3) by plants previously grown at this concentration was not reduced by NH4+ treatment. Plants pretreated for 2 days with 5 millimolar NO3 showed net efflux of NO3 when roots were transferred to 100 micromolar NO3. This efflux was stimulated in the presence of NH4+. NH4+ also stimulated NO3 efflux from plants pretreated with relatively low nitrate concentrations. It is proposed that short term effects on net uptake of NO3 occur via effects upon efflux. By contrast to the situation for NO3, net K+ uptake and influx of 36Rb+-labeled K+ was inhibited by NH4+ regardless of the nutrient history of the plants. Inhibition of net K+ uptake reached its maximum value within 2 minutes of NH4+ addition. It is concluded that the latter ion exerts a direct effect upon K+ influx.  相似文献   

11.
Dissimilatory reduction of NO2 to N2O and NH4+ by a soil Citrobacter sp. was studied in an attempt to elucidate the physiological and ecological significance of N2O production by this mechanism. In batch cultures with defined media, NO2 reduction to NH4+ was favored by high glucose and low NO3 concentrations. Nitrous oxide production was greatest at high glucose and intermediate NO3 concentrations. With succinate as the energy source, little or no NO2 was reduced to NH4+ but N2O was produced. Resting cell suspensions reduced NO2 simultaneously to N2O and free extracellular NH4+. Chloramphenicol prevented the induction of N2O-producing activity. The Km for NO2 reduction to N2O was estimated to be 0.9 mM NO2, yet the apparent Km for overall NO2 reduction was considerably lower, no greater than 0.04 mM NO2. Activities for N2O and NH4+ production increased markedly after depletion of NO3 from the media. Amendment with NO3 inhibited N2O and NH4+ production by molybdate-grown cells but not by tungstate-grown cells. Sulfite inhibited production of NH4+ but not of N2O. In a related experiment, three Escherichia coli mutants lacking NADH-dependent nitrite reductase produced N2O at rates equal to the wild type. These observations suggest that N2O is produced enzymatically but not by the same enzyme system responsible for dissimilatory reduction of NO2 to NH4+.  相似文献   

12.
We compared growth kinetics of Prorocentrum donghaiense cultures on different nitrogen (N) compounds including nitrate (NO3 ), ammonium (NH4 +), urea, glutamic acid (glu), dialanine (diala) and cyanate. P. donghaiense exhibited standard Monod-type growth kinetics over a range of N concentraions (0.5–500 μmol N L−1 for NO3 and NH4 +, 0.5–50 μmol N L−1 for urea, 0.5–100 μmol N L−1 for glu and cyanate, and 0.5–200 μmol N L−1 for diala) for all of the N compounds tested. Cultures grown on glu and urea had the highest maximum growth rates (μm, 1.51±0.06 d−1 and 1.50±0.05 d−1, respectively). However, cultures grown on cyanate, NO3 , and NH4 + had lower half saturation constants (Kμ, 0.28–0.51 μmol N L−1). N uptake kinetics were measured in NO3 -deplete and -replete batch cultures of P. donghaiense. In NO3 -deplete batch cultures, P. donghaiense exhibited Michaelis-Menten type uptake kinetics for NO3 , NH4 +, urea and algal amino acids; uptake was saturated at or below 50 μmol N L−1. In NO3 -replete batch cultures, NH4 +, urea, and algal amino acid uptake kinetics were similar to those measured in NO3 -deplete batch cultures. Together, our results demonstrate that P. donghaiense can grow well on a variety of N sources, and exhibits similar uptake kinetics under both nutrient replete and deplete conditions. This may be an important factor facilitating their growth during bloom initiation and development in N-enriched estuaries where many algae compete for bioavailable N and the nutrient environment changes as a result of algal growth.  相似文献   

13.
Enhanced nitrogen (N) availability is one of the main drivers of biodiversity loss and degradation of ecosystem functions. However, in very nutrient-poor ecosystems, enhanced N input can, in the short-term, promote diversity. Mediterranean Basin ecosystems are nutrient-limited biodiversity hotspots, but no information is available on their medium- or long-term responses to enhanced N input. Since 2007, we have been manipulating the form and dose of available N in a Mediterranean Basin maquis in south-western Europe that has low ambient N deposition (<4 kg N ha−1 yr−1) and low soil N content (0.1%). N availability was modified by the addition of 40 kg N ha−1 yr−1 as a 1∶1 NH4Cl to (NH4)2SO4 mixture, and 40 and 80 kg N ha−1 yr−1 as NH4NO3. Over the following 5 years, the impacts on plant composition and diversity (richness and evenness) and some ecosystem characteristics (soil extractable N and organic matter, aboveground biomass and % of bare soil) were assessed. Plant species richness increased with enhanced N input and was more related to ammonium than to nitrate. Exposure to 40 kg NH4 +-N ha−1 yr−1 (alone and with nitrate) enhanced plant richness, but did not increase aboveground biomass; soil extractable N even increased under 80 kg NH4NO3-N ha−1 yr−1 and the % of bare soil increased under 40 kg NH4 +-N ha−1 yr−1. The treatment containing less ammonium, 40 kg NH4NO3-N ha−1 yr−1, did not enhance plant diversity but promoted aboveground biomass and reduced the % of bare soil. Data suggest that enhanced NHy availability affects the structure of the maquis, which may promote soil erosion and N leakage, whereas enhanced NOx availability leads to biomass accumulation which may increase the fire risk. These observations are relevant for land use management in biodiverse and fragmented ecosystems such as the maquis, especially in conservation areas.  相似文献   

14.
Neutral carrier-based liquid membrane ion-selective microelectrodes for NH4+ and NO3 were developed and used to investigate inorganic nitrogen acquisition in two varieties of barley, Hordeum vulgare L. cv Olli and H. vulgare L. cv Prato, originating in cold and warm climates, respectively. In the present paper, the methods used in the fabrication of ammonium- and nitrate-selective microelectrodes are described, and their application in the study of inorganic nitrogen uptake is demonstrated. Net ionic fluxes of NH4+ and NO3 were measured in the unstirred layer of solution immediately external to the root surface. The preference for the uptake of a particular ionic form was examined by measuring the net flux of the predominant form of inorganic nitrogen, with and without the alternative ion in solution. Net flux of NH4+ into the cold-adapted variety remained unchanged when equimolar concentrations (200 micromolar) of NH4+ and NO3 were present. Similarly, net flux of NO3 into the warm-adapted variety was not affected when NH4+ was also present in solution. The high temporal and spatial resolution afforded by ammonium- and nitrate-selective microelectrodes permits a detailed examination of inorganic nitrogen acquisition and its component ionic interactions.  相似文献   

15.
A method for estimating denitrification and nitrogen fixation simultaneously in coastal sediments was developed. An isotope-pairing technique was applied to dissolved gas measurements with a membrane inlet mass spectrometer (MIMS). The relative fluxes of three N2 gas species (28N2, 29N2, and 30N2) were monitored during incubation experiments after the addition of 15NO3. Formulas were developed to estimate the production (denitrification) and consumption (N2 fixation) of N2 gas from the fluxes of the different isotopic forms of N2. Proportions of the three isotopic forms produced from 15NO3 and 14NO3 agreed with expectations in a sediment slurry incubation experiment designed to optimize conditions for denitrification. Nitrogen fixation rates from an algal mat measured with intact sediment cores ranged from 32 to 390 μg-atoms of N m−2 h−1. They were enhanced by light and organic matter enrichment. In this environment of high nitrogen fixation, low N2 production rates due to denitrification could be separated from high N2 consumption rates due to nitrogen fixation. Denitrification and nitrogen fixation rates were estimated in April 2000 on sediments from a Texas sea grass bed (Laguna Madre). Denitrification rates (average, 20 μg-atoms of N m−2 h−1) were lower than nitrogen fixation rates (average, 60 μg-atoms of N m−2 h−1). The developed method benefits from simple and accurate dissolved-gas measurement by the MIMS system. By adding the N2 isotope capability, it was possible to do isotope-pairing experiments with the MIMS system.  相似文献   

16.
A more sensitive analytical method for NO3 was developed based on the conversion of NO3 to N2O by a denitrifier that could not reduce N2O further. The improved detectability resulted from the high sensitivity of the 63Ni electron capture gas chromatographic detector for N2O and the purification of the nitrogen afforded by the transformation of the N to a gaseous product with a low atmospheric background. The selected denitrifier quantitatively converted NO3 to N2O within 10 min. The optimum measurement range was from 0.5 to 50 ppb (50 μg/liter) of NO3 N, and the detection limit was 0.2 ppb of N. The values measured by the denitrifier method compared well with those measured by the high-pressure liquid chromatographic UV method above 2 ppb of N, which is the detection limit of the latter method. It should be possible to analyze all types of samples for nitrate, except those with inhibiting substances, by this method. To illustrate the use of the denitrifier method, NO3 concentrations of <2 ppb of NO3 N were measured in distilled and deionized purified water samples and in anaerobic lake water samples, but were not detected at the surface of the sediment. The denitrifier method was also used to measure the atom% of 15N in NO3. This method avoids the incomplete reduction and contamination of the NO3 -N by the NH4+ and N2 pools which can occur by the conventional method of 15NO3 analysis. N2O-producing denitrifier strains were also used to measure the apparent Km values for NO3 use by these organisms. Analysis of N2O production by use of a progress curve yielded Km values of 1.7 and 1.8 μM NO3 for the two denitrifier strains studied.  相似文献   

17.
Chlamydomonas reinhardii cells, growing photoautotrophically under air, excreted to the culture medium much higher amounts of NO2 and NH4+ under blue than under red light. Under similar conditions, but with NO2 as the only nitrogen source, the cells consumed NO2 and excreted NH4+ at similar rates under blue and red light. In the presence of NO3 and air with 2% CO2 (v/v), no excretion of NO2 and NH4+ occurred and, moreover, if the bubbling air of the cells that were currently excreting NO2 and NH4+ was enriched with 2% CO2 (v/v), the previously excreted reduced nitrogen ions were rapidly reassimilated. The levels of total nitrate reductase and active nitrate reductase increased several times in the blue-light-irradiated cells growing on NO3 under air. When tungstate replaced molybdate in the medium (conditions that do not allow the formation of functional nitrate reductase), blue light activated most of the preformed inactive enzyme of the cells. Furthermore, nitrate reductase extracted from the cells in its inactive form was readily activated in vitro by blue light. It appears that under high irradiance (90 w m−2) and low CO2 tensions, cells growing on NO3 or NO2 may not have sufficient carbon skeletons to incorporate all the photogenerated NH4+. Because these cells should have high levels of reducing power, they might use NO3 or, in its absence, NO2 as terminal electron acceptors. The excretion of the products of NO2 and NH4+ to the medium may provide a mechanism to control reductant level in the cells. Blue light is suggested as an important regulatory factor of this photorespiratory consumption of NO3 and possibly of the whole nitrogen metabolism in green algae.  相似文献   

18.
Until recently, denitrification was thought to be the only significant pathway for N2 formation and, in turn, the removal of nitrogen in aquatic sediments. The discovery of anaerobic ammonium oxidation in the laboratory suggested that alternative metabolisms might be present in the environment. By using a combination of 15N-labeled NH4+, NO3, and NO2 (and 14N analogues), production of 29N2 and 30N2 was measured in anaerobic sediment slurries from six sites along the Thames estuary. The production of 29N2 in the presence of 15NH4+ and either 14NO3 or 14NO2 confirmed the presence of anaerobic ammonium oxidation, with the stoichiometry of the reaction indicating that the oxidation was coupled to the reduction of NO2. Anaerobic ammonium oxidation proceeded at equal rates via either the direct reduction of NO2 or indirect reduction, following the initial reduction of NO3. Whether NO2 was directly present at 800 μM or it accumulated at 3 to 20 μM (from the reduction of NO3), the rate of 29N2 formation was not affected, which suggested that anaerobic ammonium oxidation was saturated at low concentrations of NO2. We observed a shift in the significance of anaerobic ammonium oxidation to N2 formation relative to denitrification, from 8% near the head of the estuary to less than 1% at the coast. The relative importance of anaerobic ammonium oxidation was positively correlated (P < 0.05) with sediment organic content. This report of anaerobic ammonium oxidation in organically enriched estuarine sediments, though in contrast to a recent report on continental shelf sediments, confirms the presence of this novel metabolism in another aquatic sediment system.  相似文献   

19.
Nitrate-ammonium synergism in rice. A subcellular flux analysis   总被引:12,自引:0,他引:12       下载免费PDF全文
Many reports have shown that plant growth and yield is superior on mixtures of NO3 and NH4+ compared with provision of either N source alone. Despite its clear practical importance, the nature of this N-source synergism at the cellular level is poorly understood. In the present study we have used the technique of compartmental analysis by efflux and the radiotracer 13N to measure cellular turnover kinetics, patterns of flux partitioning, and cytosolic pool sizes of both NO3 and NH4+ in seedling roots of rice (Oryza sativa L. cv IR72), supplied simultaneously with the two N sources. We show that plasma membrane fluxes for NH4+, cytosolic NH4+ accumulation, and NH4+ metabolism are enhanced by the presence of NO3, whereas NO3 fluxes, accumulation, and metabolism are strongly repressed by NH4+. However, net N acquisition and N translocation to the shoot with dual N-source provision are substantially larger than when NO3 or NH4+ is provided alone at identical N concentrations.  相似文献   

20.
Net uptakes of K+ and NO3 were monitored simultaneously and continuously for two barley (Hordeum vulgare) cultivars, Prato and Olli. The cultivars had similar rates of net K+ and NO3 uptake in the absence of NH4+ or Cl. Long-term exposure (over 6 hours) to media which contained equimolar mixtures of NH4+, K+, Cl, or NO3 affected the cultivars very differently: (a) the presence of NH4+ as NH4Cl stimulated net NO3 uptake in Prato barley but inhibited net NO3 uptake in Olli barley; (b) Cl inhibited net NO3 uptake in Prato but had little effect in Olli; and (c) NH4+ as (NH4)2SO4 inhibited net K+ uptake in Prato but had little effect in Olli. Moreover, the immediate response to the addition of an ion often varied significantly from the long-term response; for example, the addition of Cl initially inhibited net K+ uptake in Olli barley but, after a 4 hour exposure, it was stimulatory. For both cultivars, net NH4+ and Cl uptake did not change significantly with time after these ions were added to the nutrient medium. These data indicate that, even within one species, there is a high degree of genotypic variation in the control of nutrient absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号