首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Repetitive DNA sequences, such as those present in microsatellites and minisatellites, telomeres, and trinucleotide repeats (linked to fragile X syndrome, Huntington disease, etc.), account for nearly 30% of the human genome. These domains exhibit enhanced susceptibility to oxidative attack to yield base modifications, strand breaks, and abasic sites; have a propensity to adopt non-canonical DNA forms modulated by the positions of the lesions; and, when not properly processed, can contribute to genome instability that underlies aging and disease development. Knowledge on the repair efficiencies of DNA damage within such repetitive sequences is therefore crucial for understanding the impact of such domains on genomic integrity. In the present study, using strategically designed oligonucleotide substrates, we determined the ability of human apurinic/apyrimidinic endonuclease 1 (APE1) to cleave at apurinic/apyrimidinic (AP) sites in a collection of tandem DNA repeat landscapes involving telomeric and CAG/CTG repeat sequences. Our studies reveal the differential influence of domain sequence, conformation, and AP site location/relative positioning on the efficiency of APE1 binding and strand incision. Intriguingly, our data demonstrate that APE1 endonuclease efficiency correlates with the thermodynamic stability of the DNA substrate. We discuss how these results have both predictive and mechanistic consequences for understanding the success and failure of repair protein activity associated with such oxidatively sensitive, conformationally plastic/dynamic repetitive DNA domains.  相似文献   

2.
3.
Going APE over ref-1   总被引:62,自引:0,他引:62  
  相似文献   

4.
Apurinic/apyrimidinic endonuclease 1 (APE1) is the major mammalian enzyme in DNA base excision repair that cleaves the DNA phosphodiester backbone immediately 5′ to abasic sites. Recently, we identified APE1 as an endoribonuclease that cleaves a specific coding region of c-myc mRNA in vitro, regulating c-myc mRNA level and half-life in cells. Here, we further characterized the endoribonuclease activity of APE1, focusing on the active-site center of the enzyme previously defined for DNA nuclease activities. We found that most site-directed APE1 mutant proteins (N68A, D70A, Y171F, D210N, F266A, D308A, and H309S), which target amino acid residues constituting the abasic DNA endonuclease active-site pocket, showed significant decreases in endoribonuclease activity. Intriguingly, the D283N APE1 mutant protein retained endoribonuclease and abasic single-stranded RNA cleavage activities, with concurrent loss of apurinic/apyrimidinic (AP) site cleavage activities on double-stranded DNA and single-stranded DNA (ssDNA). The mutant proteins bound c-myc RNA equally well as wild-type (WT) APE1, with the exception of H309N, suggesting that most of these residues contributed primarily to RNA catalysis and not to RNA binding. Interestingly, both the endoribonuclease and the ssRNA AP site cleavage activities of WT APE1 were present in the absence of Mg2+, while ssDNA AP site cleavage required Mg2+ (optimally at 0.5-2.0 mM). We also found that a 2′-OH on the sugar moiety was absolutely required for RNA cleavage by WT APE1, consistent with APE1 leaving a 3′-PO42− group following cleavage of RNA. Altogether, our data support the notion that a common active site is shared for the endoribonuclease and other nuclease activities of APE1; however, we provide evidence that the mechanisms for cleaving RNA, abasic single-stranded RNA, and abasic DNA by APE1 are not identical, an observation that has implications for unraveling the endoribonuclease function of APE1 in vivo.  相似文献   

5.
Human APE/Ref-1 protein   总被引:13,自引:0,他引:13  
  相似文献   

6.
Systematic Mutational Analysis of the Yeast Act1 Gene   总被引:34,自引:0,他引:34       下载免费PDF全文
K. F. Wertman  D. G. Drubin    D. Botstein 《Genetics》1992,132(2):337-350
We report the isolation and characterization of a synoptic set of site-directed mutations distributed throughout the single actin gene of Saccharomyces cerevisiae. Mutations were systematically targeted to the surface of the protein by identifying clusters of 2 or more charged residues in the primary sequence; every charged residue in a cluster was replaced with alanine. Mutations were recovered in high yield (34 of 36 constructed) as heterozygous diploids. Mutant phenotypes were examined in haploid segregants: 11 were recessive lethal, 16 conditional-lethal (including temperature-sensitive and salt-sensitive) and 7 had no discernible phenotype. Genetic analysis suggested that the two mutations constructed but not recovered in yeast may have a dominant defective phenotype. Location of the mutant residues on the three-dimensional structure of the rabbit muscle actin monomer confirmed that most (81%) of the charged residues we altered lie at or near the surface of the protein, confirming a key assumption of the method. Many of the new act1 alleles have properties readily interpreted in light of the actin structure and should prove useful in both genetic and biochemical studies of actin function.  相似文献   

7.
Oxidative DNA damage has been implicated in a number of central nervous system pathologies. The base excision repair (BER) pathway is one of the most important cellular protection mechanisms that respond to oxidative DNA damage. Human apurinic (apyrimidinic) endonuclease/redox effector factor (APE1/Ref-1 or APE1) is an essential enzyme in the BER pathway and is expressed in both mitotic and post-mitotic cells in humans. In neurons, a reduction of APE1 expression increases chemotherapy-induced cytotoxicity, while overexpression of APE1 protects cells against the cytotoxicity. However, given the multiple functions of APE1, knockdown of total APE1 is not completely informative of whether it is the redox or DNA repair activity, or interactions with other proteins. Therefore, the use of selective small molecules that can block each function independent of the other is of great benefit in ascertaining APE1 function in post-mitotic cells. In this study, we chose differentiated SH-SY5Y cells as our post-mitotic cell line model to investigate whether a drug-induced decrease in APE1 DNA repair or redox activity contributes to the growth and survival of post-mitotic cells under oxidative DNA damaging conditions. Here, we demonstrate that overexpression of WT-APE1 or C65-APE1 (repair competent) results in significant increase in cell viability after exposure to H2O2. However, the 177/226-APE1 (repair deficient) did not show a protective effect. This phenomenon was further confirmed by the use of methoxyamine (MX), which blocks the repair activity of APE1 that results in enhanced cell killing and apoptosis in differentiated SH-SY5Y cells and in neuronal cultures after oxidative DNA damaging treatments. Blocking APE1 redox function by a small molecule inhibitor, BQP did not decrease viability of SH-SY5Y cells or neuronal cultures following oxidative DNA damaging treatments. Our results demonstrate that the DNA repair function of APE1 contributes to the survival of nondividing post-mitotic cells following oxidative DNA damage.  相似文献   

8.
The proteasome is the main intracellular proteolytic machine involved in the regulation of numerous cellular processes, including gene expression. In addition to their proteolytic activity, proteasomes also exhibit ATPase/helicase (the 19S particle) and RNAse (the 20S particle) activities, which are regulated by post-translational modifications. In this report we uncovered that several 20S particle subunits: α1 (PSMA6), α2 (PSMA2), α4 (PSMA7), α5 (PSMA5), α6 (PSMA1) and α7 (PSMA3) possess RNAse activity against the p53 mRNA in vitro. Furthermore, we found that the RNAse activity of PSMA1 and PSMA3 was regulated upon hemin-induced differentiation of K562 proerythroleukemia cells. The decrease in RNAse activity of PSMA1 and PSMA3 was paralleled by changes in their status of phosphorylation and ubiquitylation. Collectively, our data support the notion that proteasomal RNAse activity may be functionally important and provide insights into the potential mechanism of p53 repression in erythroleukemia cells by RNAse activity of the 20S α-type subunits.  相似文献   

9.
10.
Paramecia detect and accumulate in or disperse from some chemicals. Cells do this by changing frequency of turning and speed of swimming. There are at least two mechanisms by which cells respond: one dependent on ability to turn, one dependent on speed modulation. There are also two classes of chemicals: those that require the cells' ability to turn in order to cause accumulation and dispersal (type I), and those that apparently require only speed modulation (type II). Attractants of type I cause qualitatively similar changes in behavior to repellents of type II and the converse; therefore, assays are needed to distinguish between these two classes of chemicals, despite qualitatively similar behavior of some attractants and repellents. We examined two assays of paramecium chemoresponse, T-maze assay and well test, to understand how the T-maze distinguishes between attractants of type I and repellents of type II and why the well test does not.  相似文献   

11.
12.
Semliki Forest virus (genus Alphavirus) is an important model for studying regulated nonstructural (ns) polyprotein processing. In this study, we evaluated the strictness of the previously outlined cleavage rules, accounting for the timing and outcome of each of three cleavages within the ns polyprotein P1234, and assessed the significance of residues P6 to P4 within the cleavage sites using an alanine scanning approach. The processing of the 1/2 and 3/4 sites was most strongly affected following changes in residues P5 and P4, respectively. However, none of the mutations had a detectable effect on the processing of the 2/3 site. An analysis of recombinant viruses bearing combinations of mutations in cleavage sites revealed tolerance toward the cooccurrence of native and mutated cleavage sites within the same polyprotein, suggesting a remarkable plasticity of the protease recognition pocket. Even in a virus in which all of the cleavage sequences were replaced with alanines in the P6, P5, and P4 positions, the processing pattern was largely preserved, without leading to reversion of cleavage site mutations. Instead, the emergence of second-site mutations was identified, among which Q706R/L in nsP2 was confirmed to be associated with the recognition of the P4 position within the modified cleavage sites. Our results imply that the spatial arrangement of the viral replication complex inherently contributes to scissile-site presentation for the protease, alleviating stringent sequence recognition requirements yet ensuring the precision and the correct order of processing events. Obtaining a proper understanding of the consequences of cleavage site manipulations may provide new tools for taming alphaviruses.  相似文献   

13.
Nuclear and mitochondrial transmission to daughter buds of Saccharomyces cerevisiae depends on Mdm1p, an intermediate filament-like protein localized to numerous punctate structures distributed throughout the yeast cell cytoplasm. These structures disappear and organelle inheritance is disrupted when mdm1 mutant cells are incubated at the restrictive temperature. To characterize further the function of Mdm1p, new mutant mdm1 alleles that confer temperature-sensitive growth and defects in organelle inheritance but produce stable Mdm1p structures were isolated. Microscopic analysis of the new mdm1 mutants revealed three phenotypic classes: Class I mutants showed defects in both mitochondrial and nuclear transmission; Class II alleles displayed defective mitochondrial inheritance but had no effect on nuclear movement; and Class III mutants showed aberrant nuclear inheritance but normal mitochondrial distribution. Class I and II mutants also exhibited altered mitochondrial morphology, possessing primarily small, round mitochondria instead of the extended tubular structures found in wild-type cells. Mutant mdm1 alleles affecting nuclear transmission were of two types: Class Ia and IIIa mutants were deficient for nuclear movement into daughter buds, while Class Ib and IIIb mutants displayed a complete transfer of all nuclear DNA into buds. The mutations defining all three allelic classes mapped to two distinct domains within the Mdm1p protein. Genetic crosses of yeast strains containing different mdm1 alleles revealed complex genetic interactions including intragenic suppression, synthetic phenotypes, and intragenic complementation. These results support a model of Mdm1p function in which a network comprised of multimeric assemblies of the protein mediates two distinct cellular processes.Cytoplasmic organelles are propagated by growth and division of preexisting organelles (Palade, 1983; Yaffe, 1991; Warren and Wickner, 1996), so an essential feature of cell proliferation is the inheritance of organelles by daughter cells. Organelle inheritance is thought to depend on functions of the cytoskeleton. Such a role for cytoskeletal components has been suggested by microscopic studies that revealed colocalization of organelles with microtubules (Heggeness et al., 1978; Ball and Singer, 1982; Couchman and Rees, 1982), intermediate filaments (David-Ferreira and David-Ferreira, 1980; Mose-Larsen et al., 1982; Chen, 1988), or actin microfilaments (Wang and Goldman, 1978; Kachar and Reese, 1988) in various types of cells. In addition, studies in vitro have indicated possible functions of microtubule-based motor proteins (Vale, 1987) or unconventional myosins (Adams and Pollard, 1986; Allan, 1995) in facilitating organelle movement. However, many details of the activity and roles of particular cytoskeletal components in mediating organelle movement and distribution in living cells remain obscure.Nuclear and mitochondrial inheritance in the yeast Saccharomyces cerevisiae depends on Mdm1p, an intermediate filament-like protein that defines a series of punctate structures distributed throughout the yeast cytoplasm (McConnell and Yaffe, 1992, 1993). The punctate Mdm1p structures disappear at 37°C in cells harboring the temperature-sensitive mdm1-1 mutation (McConnell and Yaffe, 1992), and this disappearance coincides with a failure to transmit mitochondria from the mother portion of the cell into the growing bud. Additionally, the mdm1-1 lesion causes a disorientation of the mitotic spindle such that nuclear division occurs entirely within the mother portion of the cell (McConnell et al., 1990). These defects indicate that the Mdm1p network has a central function in facilitating organelle inheritance; however, the mechanism of Mdm1p function is unknown (Berger and Yaffe, 1996).To explore Mdm1p function further, we have generated new mdm1 mutant alleles that cause defects in organelle inheritance but yield stable Mdm1p punctate structures even during incubation of cells at the nonpermissive temperature. These novel alleles have facilitated a genetic dissection of Mdm1p functions in nuclear and mitochondrial inheritance.  相似文献   

14.
15.
Synaptotagmins are known to mediate diverse forms of Ca2+-triggered exocytosis through their C2 domains, but the principles underlying functional differentiation among them are unclear. Synaptotagmin-1 functions as a Ca2+ sensor in neurotransmitter release at central nervous system synapses, but synaptotagmin-7 does not, and yet both isoforms act as Ca2+ sensors in chromaffin cells. To shed light into this apparent paradox, we have performed rescue experiments in neurons from synaptotagmin-1 knockout mice using a chimera that contains the synaptotagmin-1 sequence with its C2B domain replaced by the synaptotagmin-7 C2B domain (Syt1/7). Rescue was not achieved either with the WT Syt1/7 chimera or with nine mutants where residues that are distinct in synaptotagmin-7 were restored to those present in synaptotagmin-1. To investigate whether these results arise because of unique conformational features of the synaptotagmin-7 C2B domain, we determined its crystal structure at 1.44 Å resolution. The synaptotagmin-7 C2B domain structure is very similar to that of the synaptotagmin-1 C2B domain and contains three Ca2+-binding sites. Two of the Ca2+-binding sites of the synaptotagmin-7 C2B domain are also present in the synaptotagmin-1 C2B domain and have analogous ligands to those determined for the latter by NMR spectroscopy, suggesting that a discrepancy observed in a crystal structure of the synaptotagmin-1 C2B domain arose from crystal contacts. Overall, our results suggest that functional differentiation in synaptotagmins arises in part from subtle sequence changes that yield dramatic functional differences.  相似文献   

16.
有性生殖过程特异表达的Tcd1在四膜虫大核基因组重排和修复中起到重要调节作用, Tcd1含有进化中保守的chromodomain(CD)结构域以及chromo shadow domain (CSD)结构域, 然而不同结构域的具体功能并不清楚。本研究首先鉴定了TCD1基因仅含有1个CD结构域的选择性剪切本TCD1β,免疫荧光定位表明,Tcd1β定位在胞质中。定点突变Tcd1中CD1内159位色氨酸为丙氨酸, Tcd1W159A点状定位在亲本大核,然后转移到新发育的大核上围绕核膜致密分布,发育的晚期逐步消失。进一步突变CD2中437位的色氨酸为丙氨酸后,Tcd1W159AW437A在早期亲本大核形成异常的环状分布, 而在新发育大核中形成点状分布。截短CSD结构域C端35个氨基酸后, Tcd1Δ35在亲本大核和新大核上的定位不受影响。 然而,截短CSD结构域C端的53个氨基酸后, Tcd1Δ53定位在细胞质中, 无核内定位。结果表明, Tcd1中的CD1和CD2结构域决定了Tcd1蛋白在核内的分布, CSD结构域决定了Tcd1入核转运, Tcd1的3个功能结构域共同决定了Tcd1在四膜虫中的功能定位。  相似文献   

17.
TRAPP complexes, which are large multimeric assemblies that function in membrane traffic, are guanine nucleotide exchange factors (GEFs) that activate the Rab GTPase Ypt1p. Here we measured rate and equilibrium constants that define the interaction of Ypt1p with guanine nucleotide (guanosine 5'-diphosphate and guanosine 5'-triphosphate/guanosine 5′-(β,γ-imido)triphosphate) and the core TRAPP subunits required for GEF activity. These parameters allowed us to identify the kinetic and thermodynamic bases by which TRAPP catalyzes nucleotide exchange from Ypt1p. Nucleotide dissociation from Ypt1p is slow (∼ 10− 4 s− 1) and accelerated > 1000-fold by TRAPP. Acceleration of nucleotide exchange by TRAPP occurs via a predominantly Mg2+-independent pathway. Thermodynamic linkage analysis indicates that TRAPP weakens nucleotide affinity by < 80-fold and vice versa, in contrast to most other characterized GEF systems that weaken nucleotide binding affinities by 4-6 orders of magnitude. The overall net changes in nucleotide binding affinities are small because TRAPP accelerates both nucleotide binding and dissociation from Ypt1p. Weak thermodynamic coupling allows TRAPP, Ypt1p, and nucleotide to exist as a stable ternary complex, analogous to strain-sensing cytoskeleton motors. These results illustrate a novel strategy of guanine nucleotide exchange by TRAPP that is particularly suited for a multifunctional GEF involved in membrane traffic.  相似文献   

18.
Thermal TRP channels are important for thermal sensation and nociception, but their gating mechanisms have remained elusive. With optically generated submillisecond temperature steps from 22°C to >60°C, we have directly measured the activation and deactivation kinetics of TRPV1 channels, and from the measurements we determined the energetics of thermal gating. We show that activation by temperature follows single exponential time courses. It occurs in a few milliseconds and is significantly faster than activation by agonists. The gating has characteristics of a melting process involving large compensatory enthalpy (>100 kcal/mol) and entropy changes with little free energy change. The reaction path is asymmetrical with temperature mainly driving the opening while the closing has nominal but negative temperature dependence (i.e., sensitivity to cold). Both voltage and agonists alter the slope of the temperature-dependent gating curve as well as shifting the midpoint. However, compared to the energetic effect of temperature on gating, the effect of voltage is small. Our data on the interdependence between voltage and direct temperature responses are not fit to a model involving independent stimuli but instead support a temperature-sensing mechanism that is coupled to charge movement or agonist binding.  相似文献   

19.
20.
Non-coding apurinic/apyrimidinic (AP) sites in DNA form spontaneously and as DNA base excision repair intermediates are the most common toxic and mutagenic in vivo DNA lesion. For repair, AP sites must be processed by 5′ AP endonucleases in initial stages of base repair. Human APE1 and bacterial Nfo represent the two conserved 5′ AP endonuclease families in the biosphere; they both recognize AP sites and incise the phosphodiester backbone 5′ to the lesion, yet they lack similar structures and metal ion requirements. Here, we determined and analyzed crystal structures of a 2.4 Å resolution APE1-DNA product complex with Mg2+ and a 0.92 Å Nfo with three metal ions. Structural and biochemical comparisons of these two evolutionarily distinct enzymes characterize key APE1 catalytic residues that are potentially functionally similar to Nfo active site components, as further tested and supported by computational analyses. We observe a magnesium-water cluster in the APE1 active site, with only Glu-96 forming the direct protein coordination to the Mg2+. Despite differences in structure and metal requirements of APE1 and Nfo, comparison of their active site structures surprisingly reveals strong geometric conservation of the catalytic reaction, with APE1 catalytic side chains positioned analogously to Nfo metal positions, suggesting surprising functional equivalence between Nfo metal ions and APE1 residues. The finding that APE1 residues are positioned to substitute for Nfo metal ions is supported by the impact of mutations on activity. Collectively, the results illuminate the activities of residues, metal ions, and active site features for abasic site endonucleases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号