首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aurora-A is a centrosome-localized serine/threonine kinase, which plays a critical role in mitotic and meiotic cell division processes. However, the regulation of Aurora-A is still not fully understood. Previously, we have found an intramolecular inhibitory regulation mechanism of Aurora-A: the N-terminal regulatory domain (aa 1–128, Nt) can interact with the C-terminal catalytic domain (aa 129–403, Cd) and inhibit the kinase activity of Aurora-A. In this study, we found that the PreLIM domain of Ajuba, another important activator of Aurora-A, induces the autophosphorylation of the C-terminal kinase domain of Aurora-A, and is phosphorylated by the C-terminal. Moreover, the LIM domain of Ajuba can competitively bind to the N-terminal of Aurora-A, and inhibited the interaction between N-terminal and C-terminal of Aurora A. Taken together, these results suggest a novel mechanism for regulation of Aurora-A by Ajuba.  相似文献   

2.
Aurora-A, a centrosome-localized serine/threonine kinase, is over-expressed in multiple human cancers. We previously reported Zhang et al. (Biochem Biophys Res Commun 2007, 357:347–352) intramolecular inhibitory regulation of Aurora-A between its N-terminal (Nt) regulatory domain (amino acids 1–128, Nt) and C-terminal catalytic domain (aa 129–403, Cd). Here, we identified two essential sites located on the Nt of Aurora-A (Lys 99 and Lys 119) and demonstrate that mutation of either residue to Gly could cause the Nt and C-terminal lobes of the catalytic domain in Aurora-A to form a closed conformation, resulting in a loss of kinase activity. This inactive conformation was reversed by adding C26 peptide (274–299) or Ajuba, which is a required activator of Aurora-A. Over-expression of either mutant induced G2/M arrest. These results provide a basis for future anti-cancer studies targeting Aurora-A.  相似文献   

3.
Aurora-A is a centrosome-localized serine/threonine kinase that is overexpressed in multiple human cancers. Here, we report an intramolecular inhibitory regulation in Aurora-A between its N-terminal regulatory domain (aa 1-128, Nt) and the C-terminal catalytic domain (aa 129-403, Cd). Removal of Nt results in a significant increase in kinase activity. Nt inhibited the activity of the single C-terminal kinase domain, but had little effect on the activity of the full-length of Aurora-A. PP1 is not involved in this regulation, instead, Nt interacts Cd directly in vitro and in vivo. The non-Aurora box (aa 64-128) in the N-terminal negatively regulated the kinase activity of the C-terminal kinase domain by intramolecular interaction with aa 240-300 within the C-terminal.  相似文献   

4.
Aurora family kinases contribute to regulation of mitosis. Using RNA interference in synchronized HeLa cells, we now show that Aurora-A is required for mitotic entry. We found that initial activation of Aurora-A in late G2 phase of the cell cycle is essential for recruitment of the cyclin B1-Cdk1 complex to centrosomes, where it becomes activated and commits cells to mitosis. A two-hybrid screen identified the LIM protein Ajuba as an Aurora-A binding protein. Ajuba and Aurora-A interact in mitotic cells and become phosphorylated as they do so. In vitro analyses revealed that Ajuba induces the autophosphorylation and consequent activation of Aurora-A. Depletion of Ajuba prevented activation of Aurora-A at centrosomes in late G2 phase and inhibited mitotic entry. Overall, our data suggest that Ajuba is an essential activator of Aurora-A in mitotic commitment.  相似文献   

5.
The peptide hormone angiotensin II (AngII) binds to the AT0 (angiotensin type 1) receptor within the transmembrane domains in an extended conformation, and its C-terminal residue interacts with transmembrane domain VII at Phe-293/Asn-294. The molecular environment of this binding pocket remains to be elucidated. The preferential binding of benzophenone photolabels to methionine residues in the target structure has enabled us to design an experimental approach called the methionine proximity assay, which is based on systematic mutagenesis and photolabeling to determine the molecular environment of this binding pocket. A series of 44 transmembrane domain III, VI, and VII X --> Met mutants photolabeled either with 125I-[Sar1,p'-benzoyl-L-Phe8]AngII or with 125I-[Sar1,p'-methoxy-p'-benzoyl-L-Phe8]AngII were purified and digested with cyanogen bromide. Several mutants produced digestion patterns different from that observed with wild type human AT1, indicating that they had a new receptor contact with position 8 of AngII. The following residues form this binding pocket: L112M and Y113M in transmembrane domain (TMD) III; F249M, W253M, H256M, and T260M in TMD VI; and F293M, N294M, N295M, C296M, and L297M in TMD VII. Homology modeling and incorporation of these contacts allowed us to develop an evidence-based molecular model of interactions with human AT1 that is very similar to the rhodopsin-retinal interaction.  相似文献   

6.
We used tryptophan substitutions to characterize the beta M3 transmembrane domain (betaTM3) of the acetylcholine receptor (AChR). We generated 15 mutants with tryptophan substitutions within the betaTM3 domain, between residues R282W and I296W. The various mutants were injected into Xenopus oocytes, and expression levels were measured by [125I]-alpha-bungarotoxin binding. Expression levels of the M288W, I289W, L290W, and F293W mutants were similar to that of wild type, whereas the other mutants (R282W, Y283W, L284W, F286W, I287W, V291W, A292W, S294W, V295W, and I296W) were expressed at much lower levels than that of wild type. None of these tryptophan mutants produced peak currents larger than that of wild type. Five of the mutants, L284W, F286W, I287W, V295W, and I296W, were expressed at levels <15% of the wild type. I296W had the lowest expression levels and did not display any significant ACh-induced current, suggesting that this position is important for the function and assembly of the AChR. Tryptophan substitution at three positions, L284, V291, and A292, dramatically inhibited AChR assembly and function. A periodicity analysis of the alterations in AChR expression at positions 282-296 of the betaTM3 domain was consistent with an alpha-helical structure. Residues known to be exposed to the membrane lipids, including R282, M285, I289, and F293, were all found in all the upper phases of the oscillatory pattern. Mutants that were expressed at lower levels are clustered on one side of a proposed alpha-helical structure. These results were incorporated into a structural model for the spatial orientation of the TM3 of the Torpedo californica beta subunit.  相似文献   

7.
Recombinant Saccharomyces cerevisiae strains expressing β-glucosidases from Thermoascus aurantiacus (Tabgl1) and Phanerochaete chrysosporium (PcbglB and Pccbgl1) were constructed and compared to S. cerevisiae Y294[SFI], previously identified as the best β-glucosidase-producing strain. The PcbglB was also intracellularly expressed in combination with the lac12 lactose permease of Kluyveromyces lactis in S. cerevisiae Y294[PcbglB?+?Lac12]. The recombinant extracellular β-glucosidases indicated maximum activity in the pH range 4-5 and temperature optima varying from 50 to 75?°C. The S.?cerevisiae Y294[Pccbgl1] strain performed best under aerobic and anaerobic conditions, producing 2.6 times more β-glucosidase activity than S. cerevisiae Y294[SFI] and an ethanol concentration of 4.8?g?l(-1) after 24?h of cultivation on cellobiose as sole carbohydrate source. S. cerevisiae Y294[Tabgl1] was unable to grow on cellobiose (liquid medium), whereas S. cerevisiae Y294[PcbglB?+?Lac12] exhibited limited growth.  相似文献   

8.
Xenopus laevis Aurora-A is phosphorylated in vivo onto three amino acids: Ser53, Thr295 and Ser349. The activation of the kinase depends on its autophosphorylation on Thr295 within the T-loop. The phosphorylation of Ser53 by still unknown kinase(s) prevents its degradation. The present work focused on the regulation of Aurora-A function via Ser349 phosphorylation. Mutagenesis of Ser349 to alanine (S349A) had few impact in vitro on the capability of the kinase to autophosphorylate as well as on its activity. These data in addition to in gel kinase assays and site-specific proteolytic digestion experiments prove that Ser349 is clearly neither a primary autophosphorylation site, nor an autophosphorylation site depending on the priming phosphorylation of Thr295. Using specific antibodies, we also show that the phosphorylation of Aurora-A Ser349 is a physiological event during Xenopus oocyte maturation triggered by progesterone. A peak of phosphorylation paralleled the decrease of Aurora activity observed between meiosis I and II. In response to progesterone, X. laevis stage VI oocytes microinjected with the Aurora-A S349A mutant proceeded normally to germinal vesicle breakdown (GVBD), but degenerated rapidly soon after. Since phosphorylation of Ser349 is responsible for a decrease in kinase activity, our results suggest that a down-regulation of Aurora-A activity involving Ser349 phosphorylation is required in the process of maturation.  相似文献   

9.
X-linked agammaglobulinemia (XLA) is caused by mutations in the Bruton's tyrosine kinase (Btk). The absence of functional Btk leads to failure of B-cell development that incapacitates antibody production in XLA patients leading to recurrent bacterial infections. Btk SH2 domain is essential for phospholipase C-gamma phosphorylation, and mutations in this domain were shown to cause XLA. Recently, the B-cell linker protein (BLNK) was found to interact with the SH2 domain of Btk, and this association is required for the activation of phospholipase C-gamma. However, the molecular basis for the interaction between the Btk SH2 domain and BLNK and the cause of XLA remain unclear. To understand the role of Btk in B-cell development, we have determined the stability and peptide binding affinity of the Btk SH2 domain. Our results indicate that both the structure and stability of Btk SH2 domain closely resemble with other SH2 domains, and it binds with phosphopeptides in the order pYEEI > pYDEP > pYMEM > pYLDL > pYIIP. We expressed the R288Q, R288W, L295P, R307G, R307T, Y334S, Y361C, L369F, and 1370M mutants of the Btk SH2 domain identified from XLA patients and measured their binding affinity with the phosphopeptides. Our studies revealed that mutation of R288 and R307 located in the phosphotyrosine binding site resulted in a more than 200-fold decrease in the peptide binding compared to L295, Y334, Y361, L369, and 1370 mutations in the pY + 3 hydrophobic binding pocket (approximately 3- to 17-folds). Furthermore, mutation of the Tyr residue at the betaD5 position reverses the binding order of Btk SH2 domain to pYIIP > pYLDL > pYDEP > pYMEM > pYEEI. This altered binding behavior of mutant Btk SH2 domain likely leads to XLA.  相似文献   

10.
Aurora-A kinase, also known as STK15/BTAK kinase, is a member of a serine/threonine kinase superfamily that includes the prototypic yeast Ipl1 and Drosophila aurora kinases as well as other mammalian and non-mammalian aurora kinases involved in the regulation of centrosomes and chromosome segregation. The Aurora-A gene is amplified and overexpressed in a wide variety of human tumors. Aurora-A is centrosome-associated during interphase, and binds the poles and half-spindle during mitosis; its over-expression has been associated with centrosome amplification and multipolar spindles. GFP-Aurora-A was used to mark centrosomes and spindles, and monitor their movements in living cells. Centrosome pairs labeled with GFP-Aurora-A are motile throughout interphase undergoing oscillations and tumbling motions requiring intact microtubules and ATP. Fluorescence recovery after photobleaching (FRAP) was used to examine the relative molecular mobility of GFP-Aurora-A, and GFP-labeled alpha-tubulin, gamma-tubulin, and NuMA. GFP-Aurora-A rapidly exchanges in and out of the centrosome and mitotic spindle (t(1/2) approximately 3 sec); in contrast, both tubulins are relatively immobile indicative of a structural role. GFP-NuMA mobility was intermediate in both interphase nuclei and at the mitotic spindle (t(1/2) approximately 23-30 sec). Deletion mapping identifies a central domain of Aurora-A as essential for its centrosomal localization that is augmented by both the amino and the carboxyl terminal ends of the protein. Interestingly, amino or carboxy terminal deletion mutants that maintained centrosomal targeting exhibited significantly slower molecular exchange. Collectively, these studies contrast the relative cellular dynamics of Aurora-A with other cytoskeletal proteins that share its micro-domains, and identify essential regions required for targeting and dynamics.  相似文献   

11.
The cancer-associated, centrosomal adaptor protein TACC3 (transforming acidic coiled-coil 3) and its direct effector, the microtubule polymerase chTOG (colonic and hepatic tumor overexpressed gene), play a crucial function in centrosome-driven mitotic spindle assembly. It is unclear how TACC3 interacts with chTOG. Here, we show that the C-terminal TACC domain of TACC3 and a C-terminal fragment adjacent to the TOG domains of chTOG mediate the interaction between these two proteins. Interestingly, the TACC domain consists of two functionally distinct subdomains, CC1 (amino acids (aa) 414–530) and CC2 (aa 530–630). Whereas CC1 is responsible for the interaction with chTOG, CC2 performs an intradomain interaction with the central repeat region of TACC3, thereby masking the TACC domain before effector binding. Contrary to previous findings, our data clearly demonstrate that Aurora-A kinase does not regulate TACC3-chTOG complex formation, indicating that Aurora-A solely functions as a recruitment factor for the TACC3-chTOG complex to centrosomes and proximal mitotic spindles. We identified with CC1 and CC2, two functionally diverse modules within the TACC domain of TACC3 that modulate and mediate, respectively, TACC3 interaction with chTOG required for spindle assembly and microtubule dynamics during mitotic cell division.  相似文献   

12.
To identify residues of the rat AT1A angiotensin II receptor involved with signal transduction and binding of the non-peptide agonist L-162,313 (5,7-dimethyl-2-ethyl-3-[[4-[2(n-butyloxycarbonylsulfonamido)-5-isobutyl-3-thienyl]phenyl]methyl]imidazol[4,5,6]-pyridine) we have performed ligand binding and inositol phosphate turnover assays in COS-7 cells transiently transfected with the wild-type and mutant forms of the receptor. Mutant receptors bore modifications in the extracellular region: T88H, Y92H, G1961, G196W, and D278E. Compound L-162,313 displaced [125I]-Sar1,Leu8-AngII from the mutants G196I and G196W with IC50 values similar to that of the wild-type. The affinity was, however, slightly affected by the D278E mutation and more significantly by the T88H and Y92H mutations. In inositol phosphate turnover assays, the ability of L-162,313 to trigger the activation cascade was compared with that of angiotensin II. These assays showed that the G196W mutant reached a relative maximum activation exceeding that of the wild-type receptor; the efficacy was slightly reduced in the G1961 mutant and further reduced in the T88H, Y92H, and D278E mutants. Our data suggest that residues of the extracellular domain of the AT1 receptor are involved in the binding of the non-peptide ligand, or in a general receptor activation phenomenon that involves conformational modifications for a preferential binding of agonists or antagonists.  相似文献   

13.
Trypsinization of rat brain protein kinase C (80 kDa) into 50- and 32-kDa fragments occurred without inhibition of [3H]phorbol dibutyrate ([3H]PDBu) binding activity. The 50-kDa fragment, the catalytic domain (Inoue, M., Kishimoto, A., Takai, Y., and Nishizuka, Y. (1977) J. Biol. Chem. 252, 7610-7616), was further degraded by trypsin, whereas the 32-kDa fragment was resistant. Protein kinase activity and the [3H]PDBu binding activity were completely separated upon gel filtration of a solution containing Triton X-100/phosphatidylserine mixed micelles and trypsinized protein kinase C. Pooled fractions of the [3H]PDBu binding activity contained a 32-kDa fragment exclusively. The binding of [3H]PDBu to this fragment was dependent on calcium and phosphatidylserine and was of high affinity (Kd = 2.8 nM) and of essentially identical specificity to that of native protein kinase C. It is concluded that the 32-kDa fragment represents a lipid binding, regulatory domain of protein kinase C.  相似文献   

14.
Two recombinant strains of Saccharomyces cerevisiae Y294 producing cellulase using different expression strategies were compared to a reference strain in aerobic culture to evaluate the potential metabolic burden that cellulase expression imposed on the yeast metabolism. In a chemically defined mineral medium with glucose as carbon source, S. cerevisiae strain Y294[CEL5] with plasmid-borne cellulase genes produced endoglucanase and β-glucosidase activities of 0.038 and 0.30 U mg dry cell weight(-1), respectively. Chromosomal expression of these two cellulases in strain Y294[Y118p] resulted in no detectable activity, although low levels of episomally co-expressed cellobiohydrolase (CBH) activity were detected. Whereas the biomass concentration of strain Y294[CEL5] was slightly greater than that of a reference strain, CBH expression by Y294[Y118p] resulted in a 1.4-fold lower maximum specific growth rate than that of the reference. Supplementation of the growth medium with amino acids significantly improved culture growth and enzyme production, but only partially mitigated the physiological effects and metabolic burden of cellulase expression. Glycerol production was decreased significantly, up to threefold, in amino acid-supplemented cultures, apparently due to redox balancing. Disproportionately higher levels of glycerol production by Y294[CEL5] indicated a potential correlation between the redox balance of anabolism and the physiological stress of cellulase production. With the reliance on cellulase expression in yeast for the development of consolidated bioprocesses for bioethanol production, this work demonstrates the need for development of yeasts that are physiologically robust in response to burdens imposed by heterologous enzyme production.  相似文献   

15.
We have recently reported that N-myc downstream-regulated gene 1 (NDRG1)/Ca2+-associated protein with a molecular mass of 43 kDa (Cap43) suppresses angiogenesis and tumor growth of pancreatic cancer through marked decreases in both the expression of CXC chemokines and phosphorylation of a NF-κB signaling molecule, inhibitor of κB kinase (IκBα). NDRG1/Cap43 is phosphorylated at serine/threonine sites in its C-terminal domain by serum- and glucocorticoid-regulated kinase 1 (SGK1). In this study, we attempted to clarify the domain or site of NDRG1/Cap43 responsible for its suppression of CXC chemokine expression in pancreatic cancer cells. Expression of the deletion constructs CapΔ2 [deletion of amino acids (AA) 130-142] and CapΔ4 [deletion of AA 180-294] as well as the wild-type full sequence of NDRG1/Cap43 (F-Cap), suppressed the production of CXC chemokines such as Groα/CXCL1 and ENA-78/CXCL5, whereas no or low suppression was observed in cell expressing the CapΔ5 mutant [deletion of AA 326-350] and CapΔ6 mutant [deletion of AA 326-394]. We further introduced mutations at the serine and threonine sites at 328 [T328A], 330 [S330A] and 346 [T346A], which are susceptible to phosphorylation by SGK1, and also constructed double mutants [T328A, S330A], [T328A, T346A] and [S330A, T346A]. Expression of all these mutants, with the exception of [S330A, T346A], suppressed the production of CXC chemokine to similar levels as their wild-type counterpart. IκBα was found to be specifically phosphorylated by this double mutant [S330A, T346A] and the CapΔ5 mutant at levels comparable to that induced in their wild-type counterpart. Phosphorylation of NDRG1/Cap43 at both serine330 and threonine346 is required for its suppressive action on the NF-κB signaling pathway and CXC chemokine expression in pancreatic cancer cells.  相似文献   

16.
LIM domain-containing proteins contribute to cell fate determination, the regulation of cell proliferation and differentiation, and remodeling of the cell cytoskeleton. These proteins can be found in the cell nucleus, cytoplasm, or both. Whether and how cytoplasmic LIM proteins contribute to the cellular response to extracellular stimuli is an area of active investigation. We have identified and characterized a new LIM protein, Ajuba. Although predominantly a cytosolic protein, in contrast to other like proteins, it did not localize to sites of cellular adhesion to extracellular matrix or interact with the actin cytoskeleton. Removal of the pre-LIM domain of Ajuba, including a putative nuclear export signal, led to an accumulation of the LIM domains in the cell nucleus. The pre-LIM domain contains two putative proline-rich SH3 recognition motifs. Ajuba specifically associated with Grb2 in vitro and in vivo. The interaction between these proteins was mediated by either SH3 domain of Grb2 and the N-terminal proline-rich pre-LIM domain of Ajuba. In fibroblasts expressing Ajuba mitogen-activated protein kinase activity persisted despite serum starvation and upon serum stimulation generated levels fivefold higher than that seen in control cells. Finally, when Ajuba was expressed in fully developed Xenopus oocytes, it promoted meiotic maturation in a Grb2- and Ras-dependent manner.  相似文献   

17.
System l-amino acid transporters (LAT) belong to the amino acid, polyamine, and organic cation superfamily of transporters and include the light subunits of heteromeric amino acid transporters and prokaryotic homologues. Cysteine reactivity of SteT (serine/threonine antiporter) has been used here to study the substrate-binding site of LAT transporters. Residue Cys-291, in transmembrane domain 8 (TM8), is inactivated by thiol reagents in a substrate protectable manner. Surprisingly, DTT activated the transporter by reducing residue Cys-291. Cysteine-scanning mutagenesis of TM8 showed DTT activation in the single-cysteine mutants S287C, G294C, and S298C, lining the same α-helical face. S-Thiolation in Escherichia coli cells resulted in complete inactivation of the single-cysteine mutant G294C. l-Serine blocked DTT activation with an EC50 similar to the apparent KM of this mutant. Thus, S-thiolation abolished substrate translocation but not substrate binding. Mutation of Lys-295, to Cys (K295C) broadened the profile of inhibitors and the spectrum of substrates with the exception of imino acids. A structural model of SteT based on the structural homologue AdiC (arginine/agmatine antiporter) positions residues Cys-291 and Lys-295 in the putative substrate binding pocket. All this suggests that Lys-295 is a main determinant in the recognition of the side chain of SteT substrates. In contrast, Gly-294 is not facing the surface, suggesting conformational changes involving TM8 during the transport cycle. Our results suggest that TM8 sculpts the substrate-binding site and undergoes conformational changes during the transport cycle of SteT.  相似文献   

18.
Four series of dihydropyrazolo[3,4-b]pyridines and benzo[4,5]imidazo[1,2-a]pyrimidines were designed and synthesized as dual KSP and Aurora-A kinase inhibitors for anti-cancer agents by introducing some fragments of Aurora-A kinase inhibitors into our KSP inhibitor CPUYL064. A total of 19 target compounds were evaluated by two related enzyme inhibition assays and a cytotoxicity assay in vitro. The results showed that some target compounds could inhibit both enzymes, and several of them showed significant inhibition activity against HCT116 cell line. Despite showing moderate KSP and Aurora-A kinase inhibition, the lead compounds 6a and 6e displayed significant cytotoxic activity in the micromolar range, especially against the HCT116 cell line and HepG2 cell line. The results may be useful for developing a new class of inhibitors having a dual function, KSP inhibition and Aurora-A kinase inhibition, for the treatment of cancer.  相似文献   

19.
Background information. The role of the LIM‐domain‐containing protein Ajuba was initially described in cell adhesion and migration processes and recently in mitosis as an activator of the Aurora A kinase. Results. In the present study, we show that Ajuba localizes to centrosomes and kinetochores during mitosis. This localization is microtubule‐dependent and Ajuba binds microtubules in vitro. A microtubule regrowth assay showed that Ajuba follows nascent microtubules from centrosomes to kinetochores. Owing to its contribution to mitotic commitment and its microtubule‐dependent localization, Ajuba could also play a role during the metaphase—anaphase transition. We show that Ajuba interacts with Aurora B and BUBR1 [BUB (budding uninhibited by benomyl)‐related 1], two major components of the mitotic checkpoint. Inhibition of BUBR1 by siRNA (small interfering RNA) disrupts chromosome alignment at the metaphase plate and modifies Ajuba localization due to premature mitotic exit. Conclusions. Ajuba is a microtubule‐associated protein that collaborates with Aurora B and BUBR1 at the metaphase—anaphase transition and this may be important to ensure proper chromosome segregation.  相似文献   

20.
Co-crystallisation of the imidazo[1,2-a]pyrazine derivative 15 (3-chloro-N-(4-morpholinophenyl)-6-(pyridin-3-yl)imidazo[1,2-a]pyrazin-8-amine) with Aurora-A provided an insight into the interactions of this class of compound with Aurora kinases. This led to the design and synthesis of potent Aurora-A inhibitors demonstrating up to 70-fold selectivity in cell-based Aurora kinase pharmacodynamic biomarker assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号