首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We have conducted a protein interaction study of components within a specific sub-compartment of a eukaryotic flagellum. The trypanosome flagellum contains a para-crystalline extra-axonemal structure termed the paraflagellar rod (PFR) with around forty identified components. We have used a Gateway cloning approach coupled with yeast two-hybrid, RNAi and 2D DiGE to define a protein-protein interaction network taking place in this structure. We define two clusters of interactions; the first being characterised by two proteins with a shared domain which is not sufficient for maintaining the interaction. The other cohort is populated by eight proteins, a number of which possess a PFR domain and sub-populations of this network exhibit dependency relationships. Finally, we provide clues as to the structural organisation of the PFR at the molecular level. This multi-strand approach shows that protein interactome data can be generated for insoluble protein complexes.  相似文献   

3.

Background

The unicellular parasite Trypanosoma cruzi is the causative agent of Chagaś disease in humans. Adherence of the infective stage to elements of the extracellular matrix (ECM), as laminin and fibronectin, is an essential step in host cell invasion. Although members of the gp85/TS, as Tc85, were identified as laminin and fibronectin ligands, the signaling events triggered on the parasite upon binding to these molecules are largely unexplored.

Methodology/Principal Findings

Viable infective parasites were incubated with laminin, fibronectin or bovine serum albumin for different periods of time and the proteins were separated by bidimensional gels. The phosphoproteins were envisaged by specific staining and the spots showing phosphorylation levels significantly different from the control were excised and identified by MS/MS. The results of interest were confirmed by immunoblotting or immunoprecipitation and the localization of proteins in the parasite was determined by immunofluorescence. Using a host cell-free system, our data indicate that the phosphorylation contents of T. cruzi proteins encompassing different cellular functions are modified upon incubation of the parasite with fibronectin or laminin.

Conclusions/Significance

Herein it is shown, for the first time, that paraflagellar rod proteins and α-tubulin, major structural elements of the parasite cytoskeleton, are predominantly dephosphorylated during the process, probably involving the ERK1/2 pathway. It is well established that T. cruzi binds to ECM elements during the cell infection process. The fact that laminin and fibronectin induce predominantly dephosphorylation of the main cytoskeletal proteins of the parasite suggests a possible correlation between cytoskeletal modifications and the ability of the parasite to internalize into host cells.  相似文献   

4.
Li  Jiang-Fan  He  Lei  Deng  Yong-Qiang  Qi  Shu-Hui  Chen  Yue-Hong  Zhang  Xiao-Lu  Hu  Shi-Xiong  Fan  Rui-Wen  Zhao  Guang-Yu  Qin  Cheng-Feng 《中国病毒学》2021,36(6):1484-1491
Virologica Sinica - The sudden emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) has caused global panic in 2003, and the risk of SARS-CoV outbreak still exists. However, no...  相似文献   

5.

Background

Trypanosoma cruzi, the agent of Chagas disease, is a protozoan member of the Kinetoplastidae family characterized for the presence of specific and unique structures that are involved in different cell activities. One of them is the paraflagellar rod (PFR), a complex array of filaments connected to the flagellar axoneme. Although the function played by the PFR is not well established, it has been shown that silencing of the synthesis of its major proteins by either knockout of RNAi impairs and/or modifies the flagellar motility.

Methodology/Principal Findings

Here, we present results obtained by atomic force microscopy (AFM) and transmission electron microscopy (TEM) of replicas of quick-frozen, freeze-fractured, deep-etched and rotary-replicated cells to obtain detailed information of the PFR structures in regions of the flagellum in straight and in bent state. The images obtained show that the PFR is not a fixed and static structure. The pattern of organization of the PFR filament network differs between regions of the flagellum in a straight state and those in a bent state. Measurements of the distances between the PFR filaments and the filaments that connect the PFR to the axoneme as well as of the angles between the intercrossed filaments supported this idea.

Conclusions/Significance

Graphic computation based on the information obtained allowed the proposal of an animated model for the PFR structure during flagellar beating and provided a new way of observing PFR filaments during flagellar beating.  相似文献   

6.
Trypanosomes possess a single flagellum that is attached to their cell body via the flagellum attachment zone (FAZ). The FAZ is composed of two structures: a cytoplasmic filament complex and four microtubules situated next to it. There is a complex transmembrane crosslinking of this FAZ to the paraflagellar rod (PFR) and axoneme within the flagellum. We have partially purified the FAZ complex and have produced monoclonal antibodies both against the FAZ and the paraflagellar rod. The two antibodies against the FAZ (L3B2 and L6B3) recognise the cytoplasmic filament in immunofluorescence and in immunoelectron microscopy. On western blot, they detect a doublet of high molecular weight (M(r) 200,000). Two anti-PFR antibodies (L13D6 and L8C4) recognise the paraflagellar rod in immunofluorescence, but show a difference on Western blot: L13D6 recognises both major PFR proteins, whereas L8C4 is specific for only one of them. Using these new antibodies we have shown that although the growth of both cytoplasmic FAZ filament and external PFR are related, their growth initiates at different time points during the cell cycle and the two structures elongate at distinct rates.  相似文献   

7.
Modulation of the expression of the protein phosphatase‐1 (PP1) glycogen‐targeting subunit PTG exerts profound effects on cellular glycogen metabolism in vitro and in vivo. PTG contains three distinct binding domains for glycogen, PP1, and a common site for glycogen synthase and phosphorylase. The impact of disrupting the PP1‐binding domain on PTG function was examined in 3T3–L1 adipocytes. A full‐length PTG mutant was generated as an adenoviral construct in which the valine and phenylalanine residues in the conserved PP1‐binding domain were mutated to alanine (PTG‐VF). Infection of fully differentiated 3T3–L1 adipocytes with the PTG‐VF adenovirus reduced glycogen stores by over 50%. In vitro, PTG‐VF competitively interfered with wild‐type PTG action, suggesting that the mutant construct acted as a dominant‐negative molecule. The reduction in cellular glycogen storage was due to a significantly increased rate of glycogen turnover. Interestingly, acute basal and insulin‐stimulated glucose uptake and glycogen synthesis rates were enhanced in PTG‐VF expressing cells vs. control 3T3–L1 adipocytes, likely as a compensatory response to the loss of glycogen stores. These results indicate that the mutation of the PP1‐binding domain on PTG resulted in the generation of a dominant‐negative molecule that impeded endogenous PTG action and reduced cellular glycogen levels, through enhancement of glycogenolysis rather than impairment of glycogen synthesis.  相似文献   

8.

Background

Infectious diseases pose a severe worldwide threat to human and livestock health. While early diagnosis could enable prompt preventive interventions, the majority of diseases are found in rural settings where basic laboratory facilities are scarce. Under such field conditions, point-of-care immunoassays provide an appropriate solution for rapid and reliable diagnosis. The limiting steps in the development of the assay are the identification of a suitable target antigen and the selection of appropriate high affinity capture and detection antibodies. To meet these challenges, we describe the development of a Nanobody (Nb)-based antigen detection assay generated from a Nb library directed against the soluble proteome of an infectious agent. In this study, Trypanosoma congolense was chosen as a model system.

Methodology/Principal Findings

An alpaca was vaccinated with whole-parasite soluble proteome to generate a Nb library from which the most potent T. congolense specific Nb sandwich immunoassay (Nb474H-Nb474B) was selected. First, the Nb474-homologous sandwich ELISA (Nb474-ELISA) was shown to detect experimental infections with high Positive Predictive Value (98%), Sensitivity (87%) and Specificity (94%). Second, it was demonstrated under experimental conditions that the assay serves as test-of-cure after Berenil treatment. Finally, this assay allowed target antigen identification. The latter was independently purified through immuno-capturing from (i) T. congolense soluble proteome, (ii) T. congolense secretome preparation and (iii) sera of T. congolense infected mice. Subsequent mass spectrometry analysis identified the target as T. congolense glycosomal aldolase.

Conclusions/Significance

The results show that glycosomal aldolase is a candidate biomarker for active T. congolense infections. In addition, and by proof-of-principle, the data demonstrate that the Nb strategy devised here offers a unique approach to both diagnostic development and target discovery that could be widely applied to other infectious diseases.  相似文献   

9.
Posttranslational protein targeting requires chaperone assistance to direct insertion-competent proteins to integration pathways. Chloroplasts integrate nearly all thylakoid transmembrane proteins posttranslationally, but mechanisms in the stroma that assist their insertion remain largely undefined. Here, we investigated how the chloroplast chaperonin (Cpn60) facilitated the thylakoid integration of Plastidic type I signal peptidase 1 (Plsp1) using in vitro targeting assays. Cpn60 bound Plsp1 in the stroma. In isolated chloroplasts, the membrane integration of imported Plsp1 correlated with its dissociation from Cpn60. When the Plsp1 residues that interacted with Cpn60 were removed, Plsp1 did not integrate into the membrane. These results suggested Cpn60 was an intermediate in thylakoid targeting of Plsp1. In isolated thylakoids, the integration of Plsp1 decreased when Cpn60 was present in excess of cpSecA1, the stromal motor of the cpSec1 translocon that inserts unfolded Plsp1 into the thylakoid. An excess of cpSecA1 favored integration. Introducing Cpn60’s obligate substrate RbcL displaced Cpn60-bound Plsp1; then, the released Plsp1 exhibited increased accessibility to cpSec1. These in vitro targeting experiments support a model in which Cpn60 captures and then releases insertion-competent Plsp1, whereas cpSecA1 recognizes free Plsp1 for integration. Thylakoid transmembrane proteins in the stroma can interact with Cpn60 to shield themselves from the aqueous environment.  相似文献   

10.
Aminopeptidase I (API) is transported into the yeast vacuole by the cytoplasm to vacuole targeting (Cvt) pathway. Genetic evidence suggests that autophagy, a major degradative pathway in eukaryotes, and the Cvt pathway share largely the same cellular machinery. To understand the mechanism of the Cvt import process, we examined the native state of API. Dodecameric assembly of precursor API in the cytoplasm and membrane binding were rapid events, whereas subsequent vacuolar import appeared to be rate limiting. A unique temperature-sensitive API-targeting mutant allowed us to kinetically monitor its oligomeric state during translocation. Our findings indicate that API is maintained as a dodecamer throughout its import and will be useful to study the posttranslational movement of folded proteins across biological membranes.  相似文献   

11.
羊驼体内存在天然缺少轻链的重链抗体,克隆重链抗体可变区(VHH),即可构建单域抗体(single-domain antibodies,sdAbs),又称纳米抗体(nanobody,Nb)。利用非免疫羊驼噬菌体文库筛选肿瘤特异性蛋白B7-H4的纳米抗体,经过4轮淘选,ELASE鉴定阳性克隆噬菌体,测序获得其DNA序列后体外转录为mRNA,将修饰纯化后的mRNA转染到肿瘤细胞,利用细胞免疫荧光检测mRNA在肿瘤细胞内是否表达,Western印迹进一步验证其表达情况;通过CCK-8法鉴定其对肿瘤细胞的增殖抑制能力;划痕实验鉴定其对肿瘤细胞迁移能力的影响;Transwell法鉴定其对肿瘤细胞的侵袭能力的影响;裸鼠荷瘤模型瘤旁注射mRNA,鉴定其在体内实验对肿瘤组织的作用。结果显示,通过淘选获得1个高亲和性的噬菌体株菌H6;DNA测序并导出的氨基酸序列符合羊驼纳米抗体结构;将其mRNA导入肿瘤细胞,能有效表达出纳米抗体H6;转染H6-mRNA的肿瘤细胞(0.84±0.08)与未转染H6-mRNA的对照组(1.83±0.04)相比,其增殖能力明显受到抑制,P<0.01,其迁移和侵袭能力(78.60±5.36)明显低于空白对照组(197.80±21.04),效果优于B7-H4 mRNA的siRNA(95.40±16.56);在裸鼠乳腺癌模型中能有效抑制肿瘤生长,效果优于紫杉醇和B7-H4 mRNA的siRNA。这说明筛选所得抗B7-H4纳米抗体H6能特异结合B7-H4蛋白并封闭其功能,导致肿瘤细胞的增殖、迁移和侵袭受到抑制。该结果为利用B7-H4作为治疗癌症的靶点提供了实验基础。  相似文献   

12.
13.
Protein Targeting to the Bacterial Cytoplasmic Membrane   总被引:18,自引:2,他引:16       下载免费PDF全文
Proteins that perform their activity within the cytoplasmic membrane or outside this cell boundary must be targeted to the translocation site prior to their insertion and/or translocation. In bacteria, several targeting routes are known; the SecB- and the signal recognition particle-dependent pathways are the best characterized. Recently, evidence for the existence of a third major route, the twin-Arg pathway, was gathered. Proteins that use either one of these three different pathways possess special features that enable their specific interaction with the components of the targeting routes. Such targeting information is often contained in an N-terminal extension, the signal sequence, but can also be found within the mature domain of the targeted protein. Once the nascent chain starts to emerge from the ribosome, competition for the protein between different targeting factors begins. After recognition and binding, the targeting factor delivers the protein to the translocation sites at the cytoplasmic membrane. Only by means of a specific interaction between the targeting component and its receptor is the cargo released for further processing and translocation. This mechanism ensures the high-fidelity targeting of premembrane and membrane proteins to the translocation site.  相似文献   

14.
目的:构建噬菌体天然纳米抗体展示库,以期用于筛选不同抗原分子的纳米抗体筛选平台,并用艰难梭菌谷氨酸脱氢酶(GDH)抗原筛选靶向GDH的纳米抗体,对所构建的噬菌体天然纳米抗体展示库进行验证。方法:采用Oligo DT提取双峰骆驼脾脏总RNA进行反转录,通过巢氏PCR获取全套重链可变区基因,将其构建到噬菌粒pCANTAB5E载体,经多次电转化至E. coil TG1构建初级噬菌体抗体库,经辅助噬菌体拯救后构成噬菌体展示库,并对噬菌体展示库的库容及多样性进行分析和鉴定。同时以GDH为靶向抗原对文库进行淘筛,计算淘筛回收率,并对第三轮淘筛后平板的单克隆进行ELISA鉴定。结果:构建的天然噬菌体纳米抗体库的插入率为95%左右,随机挑取的9个克隆氨基酸同源性为66. 17%,经MEGA分析后具有较好的多样性,同时经辅助噬菌体拯救后,得到的噬菌体展示库滴度为4×10~(12)CFU/ml。在三轮淘筛过程中,回收率逐步升高,噬菌体得到了有效的富集,同时对阳性克隆进行测序及分析,最终得到2条抗GDH纳米抗体序列。结论:成功构建了双峰驼源天然噬菌体纳米抗体展示文库且多样性良好,为后续筛选其他的靶向抗原奠定了基础,同时筛选获得两条抗GDH纳米抗体序列,为制备艰难梭菌谷氨酸脱氢酶诊断抗体提供技术支撑。  相似文献   

15.
16.
The cryptophyte Guillardia theta harbors a plastid surrounded by four membranes. This turns protein targeting of nucleus-encoded endosymbiont localized proteins into quite a challenge, as the respective precursors have to pass either all four membranes to reach the plastid stroma or only the outermost two membranes to enter the periplastidal compartment. Therefore two sets of nuclear-encoded proteins imported into the endosymbiont can be distinguished and their topogenic signals may serve as good indicators for studying protein targeting and subsequent transport across the outermost membranes of the cryptophyte plastid. We isolated genes encoding enzymes involved in two different biochemical pathways, both of which are predicted to be localized inside the periplastidal compartment, and compared their topogenic signals to those of precursor proteins for the plastid stroma, which are encoded on either the nucleus or the nucleomorph. By this and exemplary in vitro and in vivo analyses of the topogenic signal of one protein localized in the periplastidal compartment, we present new data implicating the mechanism of targeting and transport of proteins to and across the outermost plastid membranes. Furthermore, we demonstrate that one single, but conserved amino acid is the triggering key for the discrimination between nucleus-encoded plastid and periplastidal proteins. [Reviewing Editor: Dr. Yves Van de Peer]  相似文献   

17.
Epsin N-terminal homology (ENTH) domains occur in proteins of either the epsin or epsin-related (epsinR) form. They principally function in clathrin-mediated trafficking and membrane deformation. Both epsin and epsinR possess clathrin-binding motifs, but only epsin incorporates a ubiquitin-interaction motif (UIM). To better understand the origins of ENTH-domain proteins and their functions, we performed detailed comparative genomics and phylogenetics on the epsin family. The epsin ENTH-UIM configuration is an architecture restricted to yeast and animals. Further, we undertook functional analysis in Trypanosoma brucei (T. brucei) , a divergent organism possessing a single ENTH-domain protein (TbEpsinR). TbEpsinR has a cellular location similar to both epsin and epsinR at plasma membrane clathrin budding sites and endosomal compartments, and associates with clathrin, as demonstrated by coimmunoprecipitation. Knockdown of TbEpsinR leads to a significant decrease in the intracellular pools of multiple surface antigens, without affecting bulk membrane internalization. Therefore, despite lacking the UIM, TbEpsinR maintains a similar role to metazoan epsin in endocytosis and participates as a clathrin-associated adaptor. We suggest that recruitment of a UIM to the ENTH-domain proteins was not essential for participation in endocytosis of ubiquitylated molecules, and is presumably a specific innovation restricted to higher eukaryotes.  相似文献   

18.
蛋白质酪氨酸磷酸化作用是真核细胞中的一种重要信号作用机制,由蛋白质酪氨酸激酶和蛋白质酪氨酸磷酸酶共同调控.蛋白质酪氨酸磷酸酶在真核细胞代谢进程中起着重要的作用,与许多人类疾病如肿瘤、心血管疾病、免疫缺陷性疾病、传染病、神经性以及代谢方面疾病的发病机制密切相关,许多蛋白质酪氨酸磷酸酶已成为研究和开发治疗人类重大疾病药物的优秀靶标.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号