首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Translation elongation factor P (EF-P), a ubiquitous protein over the entire range of bacterial species, rescues ribosomal stalling at consecutive prolines in proteins. In Escherichia coli and Salmonella enterica, the post-translational β-lysyl modification of Lys34 of EF-P is important for the EF-P activity. The β-lysyl EF-P modification pathway is conserved among only 26–28% of bacteria. Recently, it was found that the Shewanella oneidensis and Pseudomonas aeruginosa EF-P proteins, containing an Arg residue at position 32, are modified with rhamnose, which is a novel post-translational modification. In these bacteria, EF-P and its Arg modification are both dispensable for cell viability, similar to the E. coli and S. enterica EF-P proteins and their Lys34 modification. However, in the present study, we found that EF-P and Arg32 are essential for the viability of the human pathogen, Neisseria meningitidis. We therefore analyzed the modification of Arg32 in the N. meningitidis EF-P protein, and identified the same rhamnosyl modification as in the S. oneidensis and P. aeruginosa EF-P proteins. N. meningitidis also has the orthologue of the rhamnosyl modification enzyme (EarP) from S. oneidensis and P. aeruginosa. Therefore, EarP should be a promising target for antibacterial drug development specifically against N. meningitidis. The pair of genes encoding N. meningitidis EF-P and EarP suppressed the slow-growth phenotype of the EF-P-deficient mutant of E. coli, indicating that the activity of N. meningitidis rhamnosyl–EF-P for rescuing the stalled ribosomes at proline stretches is similar to that of E. coli β-lysyl–EF-P. The possible reasons for the unique requirement of rhamnosyl–EF-P for N. meningitidis cells are that more proline stretch-containing proteins are essential and/or the basal ribosomal activity to synthesize proline stretch-containing proteins in the absence of EF-P is lower in this bacterium than in others.  相似文献   

2.
组织因子功能的多样性   总被引:1,自引:0,他引:1  
组织因子(TF)是一个分子量为47kD的跨膜糖蛋白。作为凝血因子FⅦ/FⅧa的受体在引发凝血中起着重要的作用。近几年陆续发现TF还在肿瘤血管形成,肿瘤迁移,信号转导,炎症,动脉粥样经及胚胎发育等方面都有一定作用。但其机制仍知之甚少。有些是TF与凝血因子FⅦ/FⅦa结合后继发的效应,有些则是非FⅦ依赖性的。本文就TF的这些功能做一综述,并初步探讨了其机制及相应的治疗策略。  相似文献   

3.
4.
Highlights? Global translation elongation pause at 5′ end of ORFs in severe heat shock ? Modulation of Hsp70 levels/activity affects elongation pausing ? Pausing is associated with hydrophobic N termini ? Hsp70 shows reduced ribosome association and altered interactions in heat stress  相似文献   

5.
6.
Acinetobacter baumannii is an important nosocomial pathogen, causing a variety of opportunistic infections of the skin, soft tissues and wounds, urinary tract infections, secondary meningitis, pneumonia and bacteremia. Over 63% of A. baumannii infections occurring in the United States are caused by multidrug resistant isolates, and pan-resistant isolates have begun to emerge that are resistant to all clinically relevant antibiotics. The complement system represents the first line of defense against invading pathogens. However, many A. baumannii isolates, especially those causing severe bacteremia are resistant to complement-mediated killing, though the underlying mechanisms remain poorly understood. Here we show for the first time that A. baumannii binds host-derived plasminogen and we identify the translation elongation factor Tuf as a moonlighting plasminogen-binding protein that is exposed on the outer surface of A. baumannii. Binding of plasminogen to Tuf is at least partly dependent on lysine residues and ionic interactions. Plasminogen, once bound to Tuf can be converted to active plasmin and proteolytically degrade fibrinogen as well as the key complement component C3b. Thus, Tuf acts as a multifunctional protein that may contribute to virulence of A. baumannii by aiding in dissemination and evasion of the complement system.  相似文献   

7.
Eukaryotic translation elongation factor 2 (eEF2) facilitates the movement of the peptidyl tRNA-mRNA complex from the A site of the ribosome to the P site during protein synthesis. ADP-ribosylation (ADPR) of eEF2 by bacterial toxins on a unique diphthamide residue inhibits its translocation activity, but the mechanism is unclear. We have employed a hormone-inducible diphtheria toxin (DT) expression system in Saccharomyces cerevisiae which allows for the rapid induction of ADPR-eEF2 to examine the effects of DT in vivo. ADPR of eEF2 resulted in a decrease in total protein synthesis consistent with a defect in translation elongation. Association of eEF2 with polyribosomes, however, was unchanged upon expression of DT. Upon prolonged exposure to DT, cells with an abnormal morphology and increased DNA content accumulated. This observation was specific to DT expression and was not observed when translation elongation was inhibited by other methods. Examination of these cells by electron microscopy indicated a defect in cell separation following mitosis. These results suggest that expression of proteins late in the cell cycle is particularly sensitive to inhibition by ADPR-eEF2.  相似文献   

8.
9.
In eukaryotes, phosphorylation of translation initiation factor 2α (eIF2α) by the kinase Gcn2 (general control nonderepressible 2) is a key response to amino acid starvation. Sensing starvation requires that Gcn2 directly contacts its effector protein Gcn1, and both must contact the ribosome. We have proposed that Gcn2 is activated by uncharged tRNA bound to the ribosomal decoding (A) site, in a manner facilitated by ribosome-bound Gcn1. Protein synthesis requires cyclical association of eukaryotic elongation factors (eEFs) with the ribosome. Gcn1 and Gcn2 are large proteins, raising the question of whether translation and monitoring amino acid availability can occur on the same ribosome. Part of the ribosome-binding domain in Gcn1 has homology to one of the ribosome-binding domains in eEF3, suggesting that these proteins utilize overlapping binding sites on the ribosome and consequently cannot function simultaneously on the same ribosome. Supporting this idea, we found that eEF3 overexpression in Saccharomyces cerevisiae diminished growth on amino acid starvation medium (Gcn phenotype) and decreased eIF2α phosphorylation, and that the growth defect associated with constitutively active Gcn2 was diminished by eEF3 overexpression. Overexpression of the eEF3 HEAT domain, or C terminus, was sufficient to confer a Gcn phenotype, and both fragments have ribosome affinity. eEF3 overexpression did not significantly affect Gcn1-ribosome association, but it exacerbated the Gcn phenotype of Gcn1-M7A that has reduced ribosome affinity. Together, this suggests that eEF3 blocks Gcn1 regulatory function on the ribosome. We propose that the Gcn1-Gcn2 complex only functions on ribosomes with A-site-bound uncharged tRNA, because eEF3 does not occupy these stalled complexes.  相似文献   

10.
Translation elongation factor isoform eEF1A2 is expressed in muscle and neurons. Deletion of eEF1A2 in mice gives rise to the neurodegenerative phenotype "wasted" (wst). Mice homozygous for the wasted mutation die of muscle wasting and neurodegeneration at four weeks post-natal. Although the mutation is said to be recessive, aged heterozygous mice have never been examined in detail; a number of other mouse models of motor neuron degeneration have recently been shown to have similar, albeit less severe, phenotypic abnormalities in the heterozygous state. We therefore examined the effects of ageing on a cohort of heterozygous +/wst mice and control mice, in order to establish whether a presumed 50% reduction in eEF1A2 expression was compatible with normal function. We evaluated the grip strength assay as a way of distinguishing between wasted and wild-type mice at 3-4 weeks, and then performed the same assay in older +/wst and wild-type mice. We also used rotarod performance and immunohistochemistry of spinal cord sections to evaluate the phenotype of aged heterozygous mice. Heterozygous mutant mice showed no deficit in neuromuscular function or signs of spinal cord pathology, in spite of the low levels of eEF1A2.  相似文献   

11.
Castro JP  Carareto CM 《Genetica》2004,121(2):107-118
The molecular mechanisms that control P element transposition and determine its tissue specificity remain incompletely understood, although much information has been compiled about this element in the last decade. This review summarizes the currently available information about P element transposition, P-M hybrid dysgenesis and P cytotype features, P element-encoded repressors, and regulation of transposition.  相似文献   

12.
The adult mammalian intestine has long been used as a model to study adult stem cell function and tissue renewal as the intestinal epithelium is constantly undergoing self-renewal throughout adult life. This is accomplished through the proliferation and subsequent differentiation of the adult stem cells located in the crypt. The development of this self-renewal system is, however, poorly understood. A number of studies suggest that the formation/maturation of the adult intestine is conserved in vertebrates and depends on endogenous thyroid hormone (T3). In amphibians such as Xenopus laevis, the process takes place during metamorphosis, which is totally dependent upon T3 and resembles postembryonic development in mammals when T3 levels are also high. During metamorphosis, the larval epithelial cells in the tadpole intestine undergo apoptosis and concurrently, adult epithelial stem/progenitor cells are formed de novo, which subsequently lead to the formation of a trough-crest axis of the epithelial fold in the frog, resembling the crypt-villus axis in the adult mammalian intestine. Here we will review some recent molecular and genetic studies that support the conservation of the development of the adult intestinal stem cells in vertebrates. We will discuss the mechanisms by which T3 regulates this process via its nuclear receptors.  相似文献   

13.
The constitutive and activity-dependent components of protein synthesis are both critical for neural function. Although the mechanisms controlling extracellularly induced protein synthesis are becoming clear, less is understood about the molecular networks that regulate the basal translation rate. Here we describe the effects of chronic treatment with various neurotrophic factors and cytokines on the basal rate of protein synthesis in primary cortical neurons. Among the examined factors, brain-derived neurotrophic factor (BDNF) showed the strongest effect. The rate of protein synthesis increased in the cortical tissues of BDNF transgenic mice, whereas it decreased in BDNF knock-out mice. BDNF specifically increased the level of the active, unphosphorylated form of eukaryotic elongation factor 2 (eEF2). The levels of active eEF2 increased and decreased in BDNF transgenic and BDNF knock-out mice, respectively. BDNF decreased kinase activity and increased phosphatase activity against eEF2 in vitro. Additionally, BDNF shortened the ribosomal transit time, an index of translation elongation. In agreement with these results, overexpression of eEF2 enhanced protein synthesis. Taken together, our results demonstrate that the increased level of active eEF2 induced by chronic BDNF stimulation enhances translational elongation processes and increases the total rate of protein synthesis in neurons.The synthesis and post-translational modification of proteins play key roles in neural development, synaptic plasticity, and cognitive brain functions such as learning and memory (1, 2). Recent studies have revealed that activity-dependent regulation of translation affects neural plasticity (3, 4). Previously, we reported that BDNF,2 a critical molecule for neural plasticity (57), enhances protein synthesis and activates the translational machinery in central nervous system neurons (8). In addition, neurotransmitters such as glutamate (9, 10), dopamine (11), and serotonin (12) are also reported to facilitate translation in neurons. These observations indicate that endogenous molecules can acutely modulate neuronal translation in response to neural activity. Translation of an mRNA molecule comprises three steps: initiation, elongation, and release (or termination) (13). In the first step, mRNA and methionyl-tRNAiMet are recruited to a ribosome. During elongation, aminoacyl-tRNAs are sequentially recruited and the nascent peptide chain lengthens incrementally as amino acids are covalently attached via peptide bonds. Finally, the polypeptide chain is released from the ribosome. Each step is regulated by a variety of factors. The activities of these regulatory proteins are predominantly controlled by phosphorylation and GTP binding. BDNF activates both initiation and elongation by modulating these processes (8, 14, 15).In addition to these acute, stimulation-induced changes in the translation rate, the long term regulation of translation plays important roles in developing and mature brains. In fact, recent studies have shown that genetic disruption or overexpression of translation factors or modulator genes alters synaptic plasticity and behavior as well as the basal rate of protein synthesis. Mice lacking the gene encoding GCN2, a kinase that phosphorylates eIF2α, exhibited enhanced translation as well as aberrant long term potentiation and spatial learning (16). Similar phenotypes have been observed in mice carrying a constitutively active mutant variant (Ser52 to Ala) of eIF2α (17). Mice lacking eIF4E-binding protein 2 (4EBP2) exhibited increased cap-dependent translation and altered long-term potentiation, long-term depression (LTD), and learning (18, 19). Mice expressing a transgene encoding a dominant-negative version of MEK, which inhibits the phosphorylation of eIF4E and protein synthesis, were found to have learning deficits (20). Thus, modifying the rate of protein synthesis can produce deleterious effects on synaptic plasticity and brain function.Although genetic modifications can affect translation, the mechanisms by which the basal translation rate is controlled in normal neurons are unknown. Here, we demonstrate that chronic treatment of primary cortical neurons with BDNF increases the level of active, unphosphorylated eukaryotic elongation factor 2 (eEF2) and enhances the rates of elongation and protein synthesis. Analysis of BDNF mutant mice supports a role for this neurotrophin in regulating the basal rate of protein synthesis.  相似文献   

14.
15.
Russian Journal of Developmental Biology - Left-right asymmetry is an important feature of the body plan of bilaterian animals. Malformations of the left-right axis result in pathologies of varying...  相似文献   

16.
Eukaryotic translation initiation factor 6 (eIF6) binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit. The Saccharomyces cerevisiae gene that encodes the 245-amino-acid eIF6 (calculated Mr 25,550), designated TIF6, has been cloned and expressed in Escherichia coli. The purified recombinant protein prevents association between 40S and 60S ribosomal subunits to form 80S ribosomes. TIF6 is a single-copy gene that maps on chromosome XVI and is essential for cell growth. eIF6 expressed in yeast cells associates with free 60S ribosomal subunits but not with 80S monosomes or polysomal ribosomes, indicating that it is not a ribosomal protein. Depletion of eIF6 from yeast cells resulted in a decrease in the rate of protein synthesis, accumulation of half-mer polyribosomes, reduced levels of 60S ribosomal subunits resulting in the stoichiometric imbalance in the 40S/60S subunit ratio, and ultimately cessation of cell growth. Furthermore, lysates of yeast cells depleted of eIF6 remained active in translation of mRNAs in vitro. These results indicate that eIF6 does not act as a true translation initiation factor. Rather, the protein may be involved in the biogenesis and/or stability of 60S ribosomal subunits.  相似文献   

17.
The significance of divalent calcium ions (Ca2+) to cell cycle progression has been a subject of study for several decades, with a regulatory role for Ca2+ suggested in distinct cell types and multiple organisms. Our interest in proliferative vascular diseases led us to focus on mammalian vascular smooth muscle cells (VSMC) in particular, in which we and others had shown that a coordinate elevation in the intracellular free Ca2+ concentration is required for G1 to S phase cell cycle progression. However, the molecular basis for this Ca2+-sensitive cell cycle transition was not known.Our recent discovery of a functional protein-protein interaction between the late G1-active cyclin E1 and the major calcium signal-transducing factor Calmodulin (CaM) sheds new light on the mechanism(s) through which Ca2+ concentrations regulate cell cycle. Having identified a CaM-binding site on cyclin E1, our studies support a direct role for CaM in mediating Ca2+-sensitive cyclin E/cdk2 activity and G1 to S phase transitions in VSMC. The CaM binding site identified on cyclin E1 has a Kd for CaM consistent with that of known CaM-binding proteins, and is composed of a 22 amino acids N-terminal sequence that is highly conserved across several mammalian species. Deletion of this binding site abolished CaM binding and Ca2+-sensitive cyclin E/cdk2 activity.Here we provide our perspectives on the literature supporting a role for Ca2+ in cell cycle regulation, focusing on the evidence implicating CaM in this functionality, and discuss the potential for therapeutic modulation of CaM-dependent cell cycle machinery.  相似文献   

18.
结缔组织生长因子对血管生成和细胞功能的调节   总被引:4,自引:0,他引:4  
结缔组织生长因子(CTGF)是CCN家族的主要成员,是研究较多的CCN蛋白之一。CTGF能促进细胞的增殖、存活、迁移和黏附,调节血管生成分子(bFGF,VEGF)以及一些影响胞外基质完整性和稳定性的分子(胶原、MMPs和TIMPs)的活性。CTGF可以在多个控制位点采取直接或间接的机制调控细胞功能和血管生成。结合新的发现和新的视点,阐述CTGF对细胞功能和血管生成的调控作用以及与肿瘤生长的关系。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号