首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The typical life cycle of aphids involves several parthenogenetic generations followed by a single sexual one in autumn, i.e. cyclical parthenogenesis. Sexual females are genetically identical to their parthenogenetic mothers and carry two sex chromosomes (XX). Male production involves the elimination of one sex chromosome (to produce X0) that could give rise to genetic conflicts between X-chromosomes. In addition, deleterious recessive mutations could accumulate on sex chromosomes during the parthenogenetic phase and affect males differentially depending on the X-chromosome they inherit. Genetic conflicts and deleterious mutations thus may induce transmission bias that could be exaggerated in males. Here, the transmission of X-chromosomes has been studied in the laboratory in two cyclically parthenogenetic lineages of the bird cherry-oat aphid Rhopalosiphum padi . X-chromosome transmission was followed, using X-linked microsatellite loci, at male production in the two lineages and in their hybrids deriving from reciprocal crosses. Genetic analyses revealed non-Mendelian inheritance of X-chromosomes in both parental and hybrid lineages at different steps of male function. Putative mechanisms and evolutionary consequences of non-Mendelian transmission of X-chromosomes to males are discussed.  相似文献   

2.
Aphid life cycles can encompass cyclical parthenogenesis, obligate parthenogenesis, obligate parthenogenesis with male production and an intermediate 'bet-hedging' strategy where an aphid genotype will over-winter by continuing to reproduce by parthenogenesis and by investment in sexually produced eggs. In this paper, we focus on aphid lineages that reproduce entirely parthenogenetically (asexual aphids), in contrast to those that have any sexual forms in the annual cycle. Using modern molecular techniques, aphid biologists have made many empirical observations showing that asexual lineages are widespread both geographically and temporally. Indeed, we are collectively beginning to gather data on the evolution and persistence of these lineages through time. Here we review aphid karyology and parthenogenesis, both essential for interpretation of the molecular and ecological evolution of aphid asexual lineages. We describe the growing list of studies that have identified aphid genotypes that are both temporally and geographically widespread. We then collate examples of molecular and chromosomal evolution in asexual aphids and review the literature pertaining to phenotypic evolution and ecological diversification of asexual aphid lineages. In addition, we briefly discuss the potential of bacterial endosymbionts and epigenetic effects to influence the evolution of asexual aphid lineages. Lastly we provide a list of aphid taxa believed to be obligately asexual. This will be a useful resource for those seeking parthenogenetic animals as study systems. In conclusion, we present guidelines for the use of the term clone in aphid biology and stress the need for well-designed and well-executed studies examining the potential of asexual aphid lineages for adaptive evolution.  © 2003 The Linnean Society of London. Biological Journal of the Linnean Society , 2003, 79 , 115–135.  相似文献   

3.
The typical life cycle of an aphid is cyclical parthenogenesis which involves the alternation of sexual and asexual reproduction. However, aphid life cycles, even within a species, can encompass everything on a continuum from obligate sexuality, through facultative sexuality to obligate asexuality. Loss of the sexual cycle in aphids is frequently associated with the introduction of a new pest and can occur for a number of environmental and genetic reasons. Here we investigate loss of sexual function in Sitobion aphids in Australia. Specifically, we aimed to determine whether an absence of sexual reproduction in Australian Sitobion results from genetic loss of sexual function or environmental constraints in the introduced range. We addressed our aims by performing a series of breeding experiments. We found that some lineages have genetically lost sexual function while others retain sexual function and appear environmentally constrained to asexuality. Further, in our crosses, using autosomal and X-linked microsatellite markers, we identified processes deviating from normal Mendelian segregation. We observed strong deviations in X chromosome transmission through the sexual cycle. Additionally, when progeny genotypes were examined across multiple loci simultaneously we found that some multilocus genotypes are significantly over-represented in the sample and that levels of heterozygosity were much higher than expected at almost all loci. This study demonstrates that strong biases in the transmission of X chromosomes through the sexual cycle are likely to be widespread in aphids. The mechanisms underlying these patterns are not clear. We discuss several possible alternatives, including mutation accumulation during periods of functional asexuality and genetic imprinting.  相似文献   

4.
5.
Sexual antagonism and the evolution of X chromosome inactivation   总被引:2,自引:0,他引:2  
In most female mammals, one of the two X chromosomes is inactivated early in embryogenesis. Expression of most genes on this chromosome is shut down, and the inactive state is maintained throughout life in all somatic cells. It is generally believed that X-inactivation evolved as a means of achieving equal gene expression in males and females (dosage compensation). Following degeneration of genes on the Y chromosome, gene expression on X chromosomes in males and females is upregulated. This results in closer to optimal gene expression in males, but deleterious overexpression in females. In response, selection is proposed to favor inactivation of one of the X chromosomes in females, restoring optimal gene expression. Here, we make a first attempt at shedding light on this intricate process from a population genetic perspective, elucidating the sexually antagonistic selective forces involved. We derive conditions for the process to work and analyze evolutionary stability of the system. The implications of our results are discussed in the light of empirical findings and a recently proposed alternative hypothesis for the evolution of X-inactivation.  相似文献   

6.
Evolutionary theory predicts that sexually antagonistic mutations accumulate differentially on the X chromosome and autosomes in species with an XY sex-determination system, with effects (masculinization or feminization of the X) depending on the dominance of mutations. Organisms with alternative modes of inheritance of sex chromosomes offer interesting opportunities for studying sexual conflicts and their resolution, because expectations for the preferred genomic location of sexually antagonistic alleles may differ from standard systems. Aphids display an XX/X0 system and combine an unusual inheritance of the X chromosome with the alternation of sexual and asexual reproduction. In this study, we first investigated theoretically the accumulation of sexually antagonistic mutations on the aphid X chromosome. Our results show that i) the X is always more favourable to the spread of male-beneficial alleles than autosomes, and should thus be enriched in sexually antagonistic alleles beneficial for males, ii) sexually antagonistic mutations beneficial for asexual females accumulate preferentially on autosomes, iii) in contrast to predictions for standard systems, these qualitative results are not affected by the dominance of mutations. Under the assumption that sex-biased gene expression evolves to solve conflicts raised by the spread of sexually antagonistic alleles, one expects that male-biased genes should be enriched on the X while asexual female-biased genes should be enriched on autosomes. Using gene expression data (RNA-Seq) in males, sexual females and asexual females of the pea aphid, we confirm these theoretical predictions. Although other mechanisms than the resolution of sexual antagonism may lead to sex-biased gene expression, we argue that they could hardly explain the observed difference between X and autosomes. On top of reporting a strong masculinization of the aphid X chromosome, our study highlights the relevance of organisms displaying an alternative mode of sex chromosome inheritance to understanding the forces shaping chromosome evolution.  相似文献   

7.
Female mammalian cells silence one of their two X chromosomes, resulting in equal expression levels of X-encoded genes in female XX and male XY cells. In mice, the X chromosomes in female cells go through sequential steps of inactivation and reactivation. Depending on the developmental time window, imprinted or random X chromosome inactivation (XCI) is initiated, and both processes lead to an inactive X chromosome that is clonally inherited. Here, we review new insights into the life cycle of XCI and provide an overview of the mechanisms regulating X inactivation and reactivation.  相似文献   

8.
Analysis of the holocentric mitotic chromosomes of the peach-potato aphid, Myzus persicae (Sulzer), from clones labelled 50, 51 and 70 revealed different chromosome numbers, ranging from 12 to 14, even within each embryo, in contrast to the standard karyotype of this species (2n?=?12). Chromosome length measurements, combined with fluorescent in situ hybridization experiments, showed that the observed chromosomal mosaicisms are due to recurrent fragmentations of chromosomes X, 1 and 3. Contrary to what has generally been reported in the literature, X chromosomes were frequently involved in recurrent fragmentations, in particular at their telomeric ends opposite to the nucleolar organizer region. Supernumerary B chromosomes have been also observed in clones 50 and 51. The three aphid clones showed recurrent fissions of the same chromosomes in the same regions, thereby suggesting that the M. persicae genome has fragile sites that are at the basis of the observed changes in chromosome number. Experiments to induce males also revealed that M. persicae clones 50, 51 and 70 are obligately parthenogenetic, arguing that the reproduction by apomictic parthenogenesis favoured the stabilization and inheritance of the observed chromosomal fragments.  相似文献   

9.
Engelstädter J 《Genetics》2008,180(2):957-967
A typical pattern in sex chromosome evolution is that Y chromosomes are small and have lost many of their genes. One mechanism that might explain the degeneration of Y chromosomes is Muller's ratchet, the perpetual stochastic loss of linkage groups carrying the fewest number of deleterious mutations. This process has been investigated theoretically mainly for asexual, haploid populations. Here, I construct a model of a sexual population where deleterious mutations arise on both X and Y chromosomes. Simulation results of this model demonstrate that mutations on the X chromosome can considerably slow down the ratchet. On the other hand, a lower mutation rate in females than in males, background selection, and the emergence of dosage compensation are expected to accelerate the process.  相似文献   

10.
We used polymorphic microsatellite markers to look for recombination during parthenogenetic oogenesis between the X chromosomes of aphids of the tribe Macrosiphini. We examined the X chromosome because it comprises approximately 25 % of the genome and previous cytological observations of chromosome pairing and nucleolar organizer (NOR) heteromorphism suggest recombination, although the same is not true for autosomes. A total of 564 parthenogenetic females of Myzus clones with three distinct reproductive modes (cyclical parthenogenesis, obligate parthenogenesis and obligate parthenogenesis with male production) were genotyped at three informative X-linked loci. Also, parthenogenetically produced males from clones encompassing the full range of male-producing reproductive strategies were genotyped. These included 391 Myzus persicae males that were genotyped at three X-linked loci and 538 males from Sitobion clones that were genotyped at five informative X-linked loci. Our results show no departure from clonality in parthenogenetic generations of aphids of the tribe Macrosiphini: no recombinant genotypes were observed in parthenogenetically produced males or females.  相似文献   

11.
A set of proteins and noncoding RNAs,referred to as the male specific lethal (MSL) complex,is present on the male X chromosome in Drosophila and has been postulated to be responsible for dosage compensation of this chromosome - the up-regulation of its expression to be equal to that of two X chromosomes in females.This hypothesis is evaluated in view of lesser known aspects of dosage compensation such as the fact that metafemales with three X chromosomes also have equal expression to normal females,which would require a down-regulation of each gene copy.Moreover,when this complex is ectopically expressed in females or specifically targeted to a reporter in males,there is no increase in expression of the genes or targets with which it is associated.These observations are not consistent with the hypothesis that the MSL complex conditions dosage compensation.A synthesis is described that can account for these observations.  相似文献   

12.
Harvey SC  Viney ME 《Genetics》2001,158(4):1527-1533
The parasitic nematode Strongyloides ratti reproduces by both parthenogenesis and sexual reproduction, but its genetics are poorly understood. Cytological evidence suggests that sex determination is an XX/XO system. To investigate this genetically, we isolated a number of sex-linked DNA markers. One of these markers, Sr-mvP1, was shown to be single copy and present at a higher dose in free-living females than in free-living males. The inheritance of two alleles of Sr-mvP1 by RFLP analysis was consistent with XX female and XO male genotypes. Analysis of the results of sexual reproduction demonstrated that all progeny inherit the single paternal X chromosome and one of the two maternal X chromosomes. Therefore, all stages of the S. ratti life cycle, with the exception of the free-living males, are XX and genetically female. These findings are considered in relation to previous analyses of S. ratti and to other known sex determination systems.  相似文献   

13.
Sex chromosomes play a role in many important biological processes, including sex determination, genomic conflicts, imprinting, and speciation. In particular, they exhibit several unusual properties such as inheritance pattern, hemizygosity, and reduced recombination, which influence their response to evolutionary factors (e.g., drift, selection, and demography). Here, we examine the evolutionary forces driving X chromosome evolution in aphids, an XO system where females are homozygous (XX) and males are hemizygous (X0) at sex chromosomes. We show by simulations that the unusual mode of transmission of the X chromosome in aphids, coupled with cyclical parthenogenesis, results in similar effective population sizes and predicted levels of genetic diversity for X chromosomes and autosomes under neutral evolution. These results contrast with expectations from standard XX/XY or XX/X0 systems (where the effective population size of the X is three-fourths that of autosomes) and have deep consequences for aphid X chromosome evolution. We then localized 52 microsatellite markers on the X and 351 on autosomes. We genotyped 167 individuals with 356 of these loci and found similar levels of allelic richness on the X and on the autosomes, as predicted by our simulations. In contrast, we detected higher dN and dN/dS ratio for X-linked genes compared with autosomal genes, a pattern compatible with either positive or relaxed selection. Given that both types of chromosomes have similar effective population sizes and that the single copy of the X chromosome of male aphids exposes its recessive genes to selection, some degree of positive selection seems to best explain the higher rates of evolution of X-linked genes. Overall, this study highlights the particular relevance of aphids to study the evolutionary factors driving sex chromosomes and genome evolution.  相似文献   

14.
In the mouse XYY males are sterile, presumably because pairing abnormalities resulting from the presence of three sex chromosomes lead to meiotic breakdown. We have produced male mice, designated XYY*X, that have three sex chromosome pairing regions but only one intact Y chromosome. Unexpectedly XYY*X males are fertile, although they are no more efficient in sex chromosome pairing than previously reported XYY males. We conclude that the sterility of XYY males is caused by a combination of the deleterious effect of two Y chromosomes, presumably acting prior to meiosis, and pairing abnormalities resulting in significant meiotic disruption.by P.B. Moens  相似文献   

15.
16.
17.
The karyotype ofTatera indica cuverii consists of 68 chromosomes with two X chromosomes in the female and an X and a Y chromosome in the male. The X chromosomes are the largest and can be distinguished from each other morphologically. Autoradiographic studies indicate that the two morphologically distinguishable X chromosomes are out-of-phase in DNA replication in approximately equal proportion and thus substantiate the random inactivation hypothesis.  相似文献   

18.
Sex differences in lifespan are ubiquitous across the tree of life and exhibit broad taxonomic patterns that remain a puzzle, such as males living longer than females in birds and vice versa in mammals. The prevailing unguarded X hypothesis explains sex differences in lifespan by differential expression of recessive mutations on the X or Z chromosome of the heterogametic sex, but has only received indirect support to date. An alternative hypothesis is that the accumulation of deleterious mutations and repetitive elements on the Y or W chromosome might lower the survival of the heterogametic sex (‘toxic Y’ hypothesis). Here, we use a new database to report lower survival of the heterogametic relative to the homogametic sex across 136 species of birds, mammals, reptiles and amphibians, as expected if sex chromosomes shape sex-specific lifespans, and consistent with previous findings. We also found that the relative sizes of both the X and the Y chromosomes in mammals (but not the Z or the W chromosomes in birds) are associated with sex differences in lifespan, as predicted by the unguarded X and the ‘toxic Y’. Furthermore, we report that the relative size of the Y is negatively associated with male lifespan in mammals, so that small Y size correlates with increased male lifespan. In theory, toxic Y effects are expected to be particularly strong in mammals, and we did not find similar effects in birds. Our results confirm the role of sex chromosomes in explaining sex differences in lifespan across tetrapods and further suggest that, at least in mammals, ‘toxic Y’ effects may play an important part in this role.  相似文献   

19.
Analysis of holocentric mitotic metaphase chromosomes of the peach‐potato aphid Myzus persicae (Sulzer) clone 33H revealed different chromosome numbers, ranging from 12 to 17 within each embryo, in contrast to the standard karyotype of this species (2n = 12). Chromosome length measurements revealed that the observed chromosomal mosaicism is the result of recurrent fragmentations of chromosomes X, 1 and 3 because of fragile sites or hot spots of recombination. Fluorescent in situ hybridization experiments showed that X chromosomes were frequently involved in recurrent fragmentations, in particular their telomeric end opposite to the nucleolar organizer region. Experiments to induce males showed that M. persicae clone 33H is obligately parthenogenetic. The reproduction by apomictic parthenogenesis, together with a high telomerase expression that stabilized the chromosomes involved in the fragmentations observed in the M. persicae clone 33H, appears to favour the stabilization of the observed chromosome instability. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 350–358.  相似文献   

20.
Life span differs between the sexes in many species. Three hypotheses to explain this interesting pattern have been proposed, involving different drivers: sexual selection, asymmetrical inheritance of cytoplasmic genomes, and hemizygosity of the X(Z) chromosome (the unguarded X hypothesis). Of these, the unguarded X has received the least experimental attention. This hypothesis suggests that the heterogametic sex suffers a shortened life span because recessive deleterious alleles on its single X(Z) chromosome are expressed unconditionally. In Drosophila melanogaster, the X chromosome is unusually large (~20% of the genome), providing a powerful model for evaluating theories involving the X. Here, we test the unguarded X hypothesis by forcing D. melanogaster females from a laboratory population to express recessive X‐linked alleles to the same degree as males, using females exclusively made homozygous for the X chromosome. We find no evidence for reduced life span or egg‐to‐adult viability due to X homozygozity. In contrast, males and females homozygous for an autosome both suffer similar, significant reductions in those traits. The logic of the unguarded X hypothesis is indisputable, but our results suggest that the degree to which recessive deleterious X‐linked alleles depress performance in the heterogametic sex appears too small to explain general sex differences in life span.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号