首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Heavy alcohol consumption has detrimental neurologic effects, inducing widespread neuronal loss in both fetuses and adults. One proposed mechanism of ethanol-induced cell loss with sufficient exposure is an elevation in concentrations of bioactive lipids that mediate apoptosis, including the membrane sphingolipid metabolites ceramide and sphingosine. While these naturally-occurring lipids serve as important modulators of normal neuronal development, elevated levels resulting from various extracellular insults have been implicated in pathological apoptosis of neurons and oligodendrocytes in several neuroinflammatory and neurodegenerative disorders. Prior work has shown that acute administration of ethanol to developing mice increases levels of ceramide in multiple brain regions, hypothesized to be a mediator of fetal alcohol-induced neuronal loss. Elevated ceramide levels have also been implicated in ethanol-mediated neurodegeneration in adult animals and humans. Here, we determined the effect of chronic voluntary ethanol consumption on lipid profiles in brain and peripheral tissues from adult alcohol-preferring (P) rats to further examine alterations in lipid composition as a potential contributor to ethanol-induced cellular damage. P rats were exposed for 13 weeks to a 20% ethanol intermittent-access drinking paradigm (45 ethanol sessions total) or were given access only to water (control). Following the final session, tissues were collected for subsequent chromatographic analysis of lipid content and enzymatic gene expression. Contrary to expectations, ethanol-exposed rats displayed substantial reductions in concentrations of ceramides in forebrain and heart relative to non-exposed controls, and modest but significant decreases in liver cholesterol. qRT-PCR analysis showed a reduction in the expression of sphingolipid delta(4)-desaturase (Degs2), an enzyme involved in de novo ceramide synthesis. These findings indicate that ethanol intake levels achieved by alcohol-preferring P rats as a result of chronic voluntary exposure may have favorable vs. detrimental effects on lipid profiles in this genetic line, consistent with data supporting beneficial cardioprotective and neuroprotective effects of moderate ethanol consumption.  相似文献   

2.
Intracerebroventricular administration of NPY suppresses ethanol intake in selectively bred alcohol-preferring rat lines, but not in rats selectively bred for low ethanol drinking or in unselected Wistar rats, when access to ethanol is limited to 2h/day. However, when rats undergo chronic (24h/day) ethanol drinking (or exposure to ethanol by vapor inhalation) and have periods of imposed ethanol abstinence, the reductions in ethanol drinking following NPY administration are enhanced in alcohol-preferring rats and are also observed in unselected Wistar rats. Thus, sensitivity to the effects of NPY on ethanol drinking appears to be altered by selective breeding for ethanol preference and by a prior history of chronic but intermittent exposure to ethanol.  相似文献   

3.
The influence of chronic ethanol ingestion on hepatic acyl-CoA: cholesterol acyltransferase activity was investigated to determine the relationship between alcohol intake and cholesterol ester accumulation. Rats were given nutritionally complete liquid diets supplemented with 6.3% ethanol or an isocaloric equivalent of dextrin-maltose for 5 weeks. During this period, the hepatic acyl-CoA: cholesterol acyltransferase activity of ethanol-fed male rats remained constant, whereas the same activity in pair-fed controls as well as chow-fed rats exhibited a 30% decrease in activity. Unlike alcohol-fed male rats, the hepatic acyl-CoA: cholesterol acyltransferase activity of female rats decreased by approximately 30% by the fifth week of ethanol ingestion. Despite the fact that the gender of the animals led to disparate levels of acyl-CoA: cholesterol acyltransferase activity in response to ethanol ingestion, similar levels of cholesteryl ester accumulation were observed. The altered levels of acyl-CoA: cholesterol acyltransferase activity caused no significant change in the cholesterol concentration, cholesterol/phospholipid ratio, phospholipid fatty acid composition, or the membrane fluidity of the hepatic microsomes. We conclude that the altered hepatic acyl-CoA: cholesterol acyltransferase activity of ethanol-fed female rats cannot be directly responsible for ethanol-induced accumulation of cholesteryl esters.  相似文献   

4.
Possible roles of oxidative stress and protein oxidation on alcohol-induced augmentation of cerebral neuropathy in gp120 administered alcohol preferring rats drinking either pure water (W rats) or a free-choice ethanol and water (E rats) for 90 days. This study showed that peripherally administered gp120 accumulated into the brain, liver, and RBCs samples from water drinking – gp120 administered rats (Wg rats) and ethanol drinking – gp120 administered rats (Eg rats), although gp120 levels in samples from Eg rats were significantly greater than the levels in samples from Wg rats. The brain samples from ethanol drinking-saline administered (EC) and Wg rats exhibited comparable levels of free radicals that were significantly lower than the levels in Eg rats. Peroxiredoxin-I (PrxI) activity in the brain samples exhibited the following pattern: Wg ≫ ≫ WC ≫ EC > Eg. Total protein-carbonyl and carbonylated hippocampal cholinergic neurostimulating peptide precursor protein levels, but not N -acetylaspartate or N -acetyl aspartylglutamate or total protein-thiol levels, paralleled the free radical levels in the brain of all four groups. This suggests PrxI inhibition may be more sensitive indicator of oxidative stress than measuring free radicals or metabolites. As PrxI oxidation in WC, Wg, and EC rats was reversible, while PrxI oxidation in Eg rats was not, we suggest that alcohol drinking and gp120 together hyperoxidized and inactivated PrxI that suppressed free radical neutralization in the brain of Eg rats. In conclusion, chronic alcohol drinking, by carbonylating and hyperoxidizing free radical neutralization proteins, augmented the gp120-induced oxidative stress that may be associated with an increase in severity of the brain neuropathy.  相似文献   

5.
Moderate amounts of alcohol intake have been reported to have a protective effect on the cardiovascular system and this may involve enhanced insulin sensitivity. We established an animal model of increased insulin sensitivity by low ethanol consumption and here we investigated metabolic parameters and molecular mechanisms potentially involved in this phenomenon. For that, Wistar rats have received drinking water either without (control) or with 3% ethanol for four weeks. The effect of ethanol intake on insulin sensitivity was analyzed by insulin resistance index (HOMA-IR), intravenous insulin tolerance test (IVITT) and lipid profile. The role of liver was investigated by the analysis of insulin signaling pathway, GLUT2 gene expression and tissue glycogen content. Rats consuming 3% ethanol showed lower values of HOMA-IR and plasma free fatty acids (FFA) levels and higher hepatic glycogen content and glucose disappearance constant during the IVITT. Neither the phosphorylation of insulin receptor (IR) and insulin receptor substrate-1 (IRS-1), nor its association with phosphatidylinositol-3-kinase (PI3-kinase), was affected by ethanol. However, ethanol consumption enhanced liver IRS-2 and protein kinase B (Akt) phosphorylation (3 times, P<0.05), which can be involved in the 2-fold increased (P<0.05) hepatic glycogen content. The GLUT2 protein content was unchanged. Our findings point out that liver plays a role in enhanced insulin sensitivity induced by low ethanol consumption.  相似文献   

6.
Light to moderate drinking in humans lowers the risk of coronary heart disease and may lower blood pressure. We examined the effect of chronic low daily alcohol consumption on blood pressure, platelet cytosolic free calcium [Ca2+]i, tissue aldehyde conjugates and renal vascular changes in normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). We also examined the effects of the same weekly amount of alcohol consumption over a one day period each week simulating weekend drinking in humans. Animals, age 7 weeks, were divided into six groups of six animals each and were treated as follows: WKY and SHR control, normal drinking water; WKY and SHR, 0.5% ethanol in drinking water; WKY and SHR, 3.5% ethanol in drinking water one day/week. After 14 weeks systolic blood pressure, platelet [Ca2+]i, liver, kidney and aortic aldehyde conjugates were significantly higher (p < 0.05) in untreated SHRs as compared to untreated WKYs. Daily 0.5% ethanol consumption in SHRs significantly (p < 0.05) attenuated these changes and also attenuated smooth muscle cell hyperplasia and narrowing of the lumen in small arteries and arterioles of the kidney. WKY rats treated with 0.5% ethanol had lower aldehyde conjugates without any significant effect on blood pressure and platelet [Ca2+]i as compared to WKY controls. Consumption of 3.5% ethanol one day/week did not affect blood pressure and associated changes in normotensive WKY rats or hypertensive SHRs as compared to their respective controls. These results suggest that chronic daily low ethanol intake lowers blood pressure in SHRs by lowering tissue aldehyde conjugates and cytosolic free calcium.  相似文献   

7.
Effect of chronic ethanol feeding on oxysterols in rat liver   总被引:2,自引:0,他引:2  
It was our hypothesis that, as a consequence of increased oxidative stress, cholesterol-derived hydroperoxides and oxysterols are increased in livers of rats exposed to ethanol. To test this we dosed Wistar rats (approximately 0.1 kg initial body weight) with ethanol chronically (rats fed a nutritionally complete liquid diet containing ethanol as 35% of total calories; sampled liver at approximately 6-7 weeks). We measured concentrations of 7 alpha- and 7 beta-hydroperoxycholest-5-en-3 beta-ol (7 alpha-OOH and 7 beta-OOH) as well as 7 alpha- and 7 beta-hydroxycholesterol (7 alpha-OH and 7 beta-OH), and 3 beta-hydroxycholest-5-en-7-one (also termed 7-ketocholesterol; 7-keto). In response to chronic alcohol feeding, there were significant elevations in the concentrations of 7 alpha-OOH (+169%, P = 0.005) and 7 beta-OOH (+199%, P = 0.011). Increases in the concentrations of hepatic 7-keto (+74%, P = 0.01) and decreases in cholesterol (-43%; P = 0.03) also occurred. In contrast, the concentrations of both 7 alpha-OH and 7 beta-OH were not significant (NS). However, when oxysterols in chronic ethanol-fed rats were expressed relative to cholesterol there were significant increases in 7-keto/cholesterol (P = 0.0006), 7 alpha-OH/cholesterol (P = 0.0018) and 7 beta-OH/cholesterol (P = 0.0047). In conclusion, this is the first report of increased 7 alpha-OOH, 7 beta-OOH, and 7-keto in liver of rats and their elevation in chronic experimental alcoholism represent evidence of increased oxidative stress.  相似文献   

8.
Chronic intracerebroventricular (ICV) treatment with nociceptin/orphanin FQ (NC), the endogenous ligand for the opioid receptor-like 1 (ORL1) receptor, reduces ethanol intake in alcohol-preferring rats and abolishes the rewarding properties of ethanol in the place conditioning paradigm. To pharmacologically characterize the receptor involved, the present study evaluated the effect on ethanol drinking in genetically selected Marchigian Sardinian alcohol-preferring (msP) rats of ICV injections for 8 days of NC or of the NC analogs NC(1-17)NH(2), NC(1-13)NH(2), NC(1-12)NH(2) and [Nphe(1)]NC(1-13)NH(2). In vitro studies indicate that NC, NC(1-17)NH(2), NC(1-13)NH(2) and NC(1-12)NH(2) are agonists, while [Nphe(1)]NC(1-13)NH(2) is a selective antagonist at the ORL1 receptor. Freely feeding and drinking rats were offered 10% ethanol 30 min/day at the beginning of the dark phase of the light cycle. NC significantly attenuated ethanol intake at 500 or 1000 ng/rat (210 or 420 pmol/rat). NC(1-17)NH(2), markedly reduced ethanol intake, but its effect was statistically significant at 1000 (420 pmol/rat), not at 500 ng/rat (210 pmol/rat). After the end of treatment ethanol drinking promptly came back to baseline level. Ethanol consumption was also reduced by NC(1-13)NH(2); however, its effect was less potent and pronounced. NC(1-12)NH(2) did not modify ethanol intake at doses up to 4000 ng/rat (2339 pmol/rat). Water and food consumption were not modified. Treatment with [Nphe(1)]NC(1-13)NH(2), 66 or 99 microg/rat, did not modify ethanol intake; however, [Nphe(1)]NC(1-13)NH(2), 66 microg/rat, given just before 1000 ng/rat of NC(1-17)NH(2), abolished the effect of the agonist. The present results show that the 13 amino acid N-terminal sequence of NC is essential for the effect on ethanol intake and indicate that [Nphe(1)]NC(1-13)NH(2) acts as an antagonist to block the effect of NC. These findings provide further evidence that selective agonists at the ORL-1 receptor attenuate ethanol intake in alcohol-preferring rats and suggest that the NC/ORL1 system may represent an interesting target for treatment of alcohol abuse.  相似文献   

9.
Low ethanol intake prevents salt-induced hypertension in WKY rats   总被引:2,自引:0,他引:2  
Low alcohol intake in humans lowers the risk of coronary heart disease and may lower blood pressure. In hypertension, insulin resistance with altered glucose metabolism leads to increased formation of aldehydes. We have shown that chronic low alcohol intake decreased systolic blood pressure (SBP) and tissue aldehyde conjugates in spontaneously hypertensive rats and demonstrated a strong link between elevated tissue aldehyde conjugates and hypertension in salt-induced hypertensive Wistar-Kyoto (WKY) rats. This study investigated the antihypertensive effect of chronic low alcohol consumption in high salt-treated WKY rats and its effect on tissue aldehyde conjugates, platelet cytosolic free calcium ([Ca2 +] i ),and renal vascular changes. Animals, aged 7 weeks, were divided into three groups of six animals each. The control group was given normal salt diet (0.7% NaCl) and regular drinking water; the high salt group was given a high salt diet (8% NaCl) and regular drinking water; the high salt + ethanol group was given a high salt diet and 0.25% ethanol in drinking water. After 10 weeks, SBP, platelet [Ca2 +] i , and tissue aldehyde conjugates were significantly higher in rats in the high salt group as compared with controls. Animals on high salt diets also showed smooth muscle cell hyperplasia in the small arteries and arterioles of the kidney. Ethanol supplementation prevented the increase in SBP and platelet [Ca2 +] i and aldehyde conjugates in liver and aorta. Kidney aldehyde conjugates and renal vascular changes were attenuated. These results suggest that chronic low ethanol intake prevents salt-induced hypertension and attenuates renal vascular changes in WKY rats by preventing an increase in tissue aldehyde conjugates and cytosolic [Ca2 +] i .  相似文献   

10.
The protective effects of live Lactobacillus paracasei NFRI 7415 on alcoholic liver disease were investigated. Male Fischer 344 rats were fed a control diet (CD), an ethanol diet (ED) (35.8% of total energy from ethanol), or an ethanol diet containing 20% live Lb. paracasei NFRI 7415 (10(7) cfu/g) (LD) for 10 weeks. The results indicated that live Lb. paracasei NFRI 7415 reduced the total cholesterol concentration of the plasma and liver in the rats fed the LD. The level of docosahexaenoic acid (DHA; 22:6n-3) in the plasma and liver of the LD group was higher than in the ED group. Chronic alcohol consumption decreased the level of n-3 fatty acid in the plasma and liver of the ED group. These results indicated that live Lb. paracasei NFRI 7415 can adjust the fatty acid composition of the plasma and liver, and that it is possible to decrease liver damage due to chronic alcohol intake.  相似文献   

11.
12.
13.
Effect of spontaneous ingestion of ethanol on brain dopamine metabolism   总被引:3,自引:0,他引:3  
The effect of ethanol, either administered by gavage or voluntarily ingested, on brain dopamine (DA) metabolism was studied in alcohol-preferring and alcohol non-preferring rats. In alcohol non-preferring rats ethanol administration (2 g/kg) increased 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) and reduced DA levels in the caudate nucleus and olfactory tubercle but was ineffective in the medial prefrontal cortex. In alcohol-preferring rats ethanol effect was greater than in non-preferring animals and ethanol influenced DA metabolism also in the medial prefrontal cortex. The effect of voluntary ethanol ingestion was studied in alcohol-preferring rats trained to consume their daily fluid intake within 2 hrs. Voluntary ingestion of ethanol (3.1 +/- 0.7 g/kg in 1 hr) increased DA metabolites and reduced DA levels in the caudate nucleus, olfactory tubercle and medial prefrontal cortex. The results suggest that voluntary ethanol ingestion increases the release of DA from nigro-striatal and meso-limbic DA neurons.  相似文献   

14.
Treatment with thyroxine or triiodothyronine for 7 days in order to simulate a hyperthyroid state results in an enhanced activity of the microsomal ethanol oxidizing system. Conversely, a decrease of hepatic alcohol dehydrogenase activity was observed under these experimental conditions, whereas hepatic catalase activity remained unchanged. These findings suggest that if chronic ethanol consumption simulates a “hyperthyroid hepatic state”, increased rates of ethanol metabolism observed following prolonged alcohol intake might therefore be attributed at least in part to an induction of microsomal ethanol oxidizing system activity in the liver.  相似文献   

15.
Polidori C  Luciani F  Fedeli A  Geary N  Massi M 《Peptides》2003,24(9):1441-1444
Leptin, a hormone secreted by the adipocytes and involved in feeding and energy balance control, has been proposed to modulate alcohol craving in mice and humans. This study evaluated whether leptin modulates alcohol intake in Marchigian Sardinian alcohol-preferring (msP) rats. Rats were offered 10% ethanol either 2h per day at the beginning of dark period of the 12:12h light/dark cycle, or 24h per day. Leptin was injected into the lateral ventricle (LV), the third ventricle (3V), or intraperitoneally (IP) once a day, 1h before the onset of the dark period. Neither acute nor chronic (9 days) leptin injections (1 or 8microg per rat) into the LV or 3V modified ethanol intake in male msP rats, offered ethanol 2h per day. Chronic LV injection of leptin (8 or 32 microg per rat in male rats and 8 or 16 microg per rat in female rats for 7 days), or chronic IP injections of leptin (1mg/kg in male rats for 5 days) failed to modify the intake of ethanol, offered 24h per day. Finally, chronic LV leptin injections (8 or 32 microg per rat for 12 days) did not modify ethanol intake in male msP rats, adapted to ad libitum access to ethanol and then tested after a 6-day period of ethanol deprivation. In contrast, in most of these conditions leptin significantly reduced food intake. These data do not support a role for leptin in alcohol intake, preference, or craving in msP rats.  相似文献   

16.
Syrian golden hamster (Mesocricetus auratus) is extraordinary among laboratory rodents in its ability to drink alcohol. After being given a free choice between 15% ethanol and water for 5 days, both male and female hamsters derived at least 85% of the fluid intake from the ethanol solution. Analysis of the alcohol-metabolizing enzymes in alcohol-na??ve hamsters showed that the male had a higher activity of 57%, 58% and 34% in stomach alcohol dehydrogenase, liver cytochrome P450 1A2 and liver aldehyde dehydrogenase, respectively, compared with the female. The activity of lung angiotensin-converting enzyme, which influence fluid intake, was twofold higher in the male. After 4 weeks of ethanol consumption, the activities of the hepatic alcohol-metabolizing enzymes remained unchanged except cytochrome P450 2E1 which increased 42% and 88% in male and female hamsters, respectively. A reduction of ~80% in the activity of cytochrome P450 1A2 was observed in both genders. The activities of several other cytochrome P450 enzymes were also decreased. Although ethanol consumption did not increase plasma aminotransferase levels, it caused a significant increase in liver weight in female, but not male hamsters.  相似文献   

17.
To investigate possible gender differences in the response of hepatic fatty acids and cytosolic fatty acid-binding capacity to ethanol consumption, both female and male rats (41 days of age) were pair fed liquid diets (with a littermate of the same sex) for 28 days. The diets contained 36% of energy either as ethanol or as additional carbohydrate. After ethanol feeding, the hepatic concentration of fatty acids increased 155% in females (P less than 0.01), whereas there was only a trend for an increase (22%) in males. This was associated with a much smaller increase of cytosolic fatty acid-binding capacity in females (58%) than in males (161%). Whereas the ethanol-induced increase in fatty acid-binding capacity provided an ample excess of binding sites for the fatty acids in males, the increase in females was barely sufficient for the binding of the large increase of fatty acids produced by ethanol in the females. The cytosolic protein responsible for this binding, the liver fatty acid-binding protein of the cytosol (L-FABPc), also promotes esterification of the fatty acids. In keeping with the postulated role of this protein, the ethanol-induced increases in hepatic triacylglycerols, phospholipids, and cholesterol esters were smaller in females than in males. The gender difference in cholesterol esters was associated with parallel changes in acyl-CoA transferase activity. A possible implication of the relatively small and most likely inadequate increase in liver fatty acid-binding capacity and fatty acid esterification during alcohol consumption in the females is that under these circumstances the risk for development of a potentially deleterious accumulation of fatty acids in the liver is increased, thereby contributing to the enhanced vulnerability of females to alcohol-induced hepatotoxicity.  相似文献   

18.
Non-alcoholic fatty liver disease (NAFLD), defined by the American Liver Society as the buildup of extra fat in liver cells that is not caused by alcohol, is the most common liver disease in North America. Obesity and type 2 diabetes are viewed as the major causes of NAFLD. Environmental contaminants have also been implicated in the development of NAFLD. Northern populations are exposed to a myriad of persistent organic pollutants including polychlorinated biphenyls, organochlorine pesticides, flame retardants, and toxic metals, while also affected by higher rates of obesity and alcohol abuse compared to the rest of Canada. In this study, we examined the impact of a mixture of 22 contaminants detected in Inuit blood on the development and progression of NAFLD in obese JCR rats with or without co-exposure to10% ethanol. Hepatosteatosis was found in obese rat liver, which was worsened by exposure to 10% ethanol. NCM treatment increased the number of macrovesicular lipid droplets, total lipid contents, portion of mono- and polyunsaturated fatty acids in the liver. This was complemented by an increase in hepatic total cholesterol and cholesterol ester levels which was associated with changes in the expression of genes and proteins involved in lipid metabolism and transport. In addition, NCM treatment increased cytochrome P450 2E1 protein expression and decreased ubiquinone pool, and mitochondrial ATP synthase subunit ATP5A and Complex IV activity. Despite the changes in mitochondrial physiology, hepatic ATP levels were maintained high in NCM-treated versus control rats. This was due to a decrease in ATP utilization and an increase in creatine kinase activity. Collectively, our results suggest that NCM treatment decreases hepatic cholesterol export, possibly also increases cholesterol uptake from circulation, and promotes lipid accumulation and alters ATP homeostasis which exacerbates the existing hepatic steatosis in genetically obese JCR rats with or without co-exposure to ethanol.  相似文献   

19.
Chronic ethanol consumption is well established as a major risk factor for type-2 diabetes(T2D), which is evidenced by impaired glucose metabolism and insulin resistance. However, the relationships between alcoholconsumption and the development of T2 D remain controversial. In particular, the direct effects of ethanol consumption on proliferation of pancreatic β-cell and the exact mechanisms associated with ethanolmediated β-cell dysfunction and apoptosis remain elusive. Although alcoholism and alcohol consumption are prevalent and represent crucial public health problems worldwide, many people believe that low-tomoderate ethanol consumption may protect against T2 D and cardiovascular diseases. However, the J- or U-shaped curves obtained from cross-sectional and large prospective studies have not fully explained the relationship between alcohol consumption and T2 D. This review provides evidence for the harmful effects of chronic ethanol consumption on the progressive development of T2 D, particularly with respect to pancreatic β-cell mass and function in association with insulin synthesis and secretion. This review also discusses a conceptual framework for how ethanolproduced peroxynitrite contributes to pancreatic β-cell dysfunction and metabolic syndrome.  相似文献   

20.
Effects of ethanol on lipid metabolism.   总被引:11,自引:0,他引:11  
Alcohol promotes accumulation of fat in the liver mainly by substitution of ethanol for fatty acids as the major hepatic fuel. The degree of lipid accumulation depends on the supply of dietary fat. Progressive alteration of the mitochondria, which occurs during chronic alcohol consumption, decreases fatty acid oxidation by interfering with citric acid cycle activity. This block is partially compensated for by increased ketone body production, which results in ketonemia. Thus, mitochondrial damage perpetuates fatty acid accumulation even in the absence of ethanol oxidation. Alcohol facilitates esterification of the accumulated fatty acids to triglycerides, phospholipids, and cholesterol esters, all of which accumulate in the liver. The accumulated lipids are disposed of in part as serum lipoprotein, resulting in moderate hyperlipemia. In some individuals with pre-existing alterations of lipid metabolism, small ethanol dose may provoke marked hyperlipemia which responds to alcohol withdrawal. Inhibition of the catabolism of cholesterol to bile salt may contribute to the hepatic accumulation and hypercholesterolemia. The capacity of lipoprotein production and hyperlipemia development increases during chronic alcohol consumption, probably as a result of the concomitant hypertrophy of the endoplasmic reticulum and Golgi apparatus. However, this compensation is relatively inefficient in ridding the liver of fat. This inefficiency may be linked to alterations of hepatic microtubules induced by ethanol or its metabolites, which interfere with the export of protein from liver to serum, promoting hepatic accumulation of proteins as well as fat. As liver injury aggravates, hyperlipemia wanes and liver steatosis is exaggerated. Derangements of serum lipids similar to those found in other types of liver disease also become apparent. The changes in serum lipids may be a sensitive indicator of the progression of liver damage in the alcoholic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号