首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The links between recombination and replication have been appreciated for decades and it is now generally accepted that these two fundamental aspects of DNA metabolism are inseparable: Homologous recombination is essential for completion of DNA replication and vice versa. This review focuses on the roles that recombination enzymes play in underpinning genome duplication, aiding replication fork movement in the face of the many replisome barriers that challenge genome stability. These links have many conserved features across all domains of life, reflecting the conserved nature of the substrate for these reactions, DNA.The interplay between replication and recombination is complex in terms of both mechanism and integration within DNA metabolism. At the heart of this interplay is the requirement for single-stranded DNA (ssDNA), the substrate for DNA-strand-exchange proteins, to initiate recombination (Cox 2007b; San Filippo et al. 2008). Whether, when, and where this ssDNA is generated determines the functional relationship between replication and recombination, a relationship that can operate in both directions. Homologous recombination enzymes are critical for successful completion of genome duplication (Kogoma 1997; Cox et al. 2000) but DNA replication also underpins homologous recombination, as discussed elsewhere in this collection. The links between recombination and replication are therefore intimate and one cannot be considered in isolation from the other. However, involvement of DNA-strand-exchange proteins, regardless of the metabolic context, comes with the unavoidable risk of genome rearrangements. This genome instability can occasionally increase evolutionary fitness but more frequently is deleterious to the viability of the individual.This review will focus on fundamental aspects of the links between replication and recombination enzymes rather than simply providing a list of known enzymes and reactions. The substrate, DNA, is identical in all of these reactions and this is reflected in the high mechanistic conservation of replication and recombination.  相似文献   

2.
DNA double-strand breaks are repaired by two major pathways, homologous recombination or nonhomologous end joining. The commitment to one or the other pathway proceeds via different steps of resection of the DNA ends, which is controlled and executed by a set of DNA double-strand break sensors, endo- and exonucleases, helicases, and DNA damage response factors. The molecular choreography of the underlying protein machinery is beginning to emerge. In this review, we discuss the early steps of genetic recombination and double-strand break sensing with an emphasis on structural and molecular studies.All domains of life maintain genomes and ensure genetic diversity through homologous recombination (HR) or homology directed repair. HR is initiated by single unprotected DNA ends, which arise at collapsed replication forks and unprotected telomeres, or by DNA double-strand breaks (DSBs), which are products of ionizing radiation, reactive oxygen species, genotoxic chemicals, or abortive topoisomerase reactions (Sutherland et al. 2000; Aguilera and Gomez-Gonzalez 2008; Cadet et al. 2012; Mehta and Haber 2014). In special cellular states, programmed DSBs are introduced by endonucleases to initiate the generation of genetic variability by processes such as meiotic recombination of homologous chromosomes (Lam and Keeney 2014; Zickler and Kleckner 2014), V(D)J and class switch recombination to generate antibody diversity and yeast-mating-type switching (Gapud and Sleckman 2011; Haber 2012; Xu et al. 2012b). Failure to repair DSBs can lead to cell death or gross chromosomal aberrations, which in humans are a hallmark of cancer (Myung et al. 2001a,b; Hanahan and Weinberg 2011).Beside HR, DSBs can also be repaired by nonhomologous end joining (NHEJ). Although HR requires a template such as a sister chromatid or a homologous chromosome and is limited to S and G2 phases of the cell cycle, NHEJ is template-independent and can occur in all cell cycle states. Indeed, the choice of pathways is to a significant extent not stochastic but a function of the cell cycle (Ferretti et al. 2013), with NHEJ being the predominant pathway in mammals outside of S phase. NHEJ is basically a ligation reaction of two DNA ends that are only minimally processed. Derivatives of NHEJ such as microhomology-mediated end joining (MMEJ) or alternative NHEJ (alt-NHEJ) require more substantial processing and may lead to the loss of genetic information. For recent reviews of NHEJ, which is not covered in detail here, please refer to, for example, Thompson (2012) and Chiruvella et al. (2013).HR has multiple steps and requires extensive processing of DNA ends (Symington 2014). First, the free DNA ends are recognized by DSB sensors, followed by 5′-3′ resection of the DNA ends. In eukaryotes and archaea, this step may be divided into initial short-range resection, after which MMEJ/alt-NHEJ can still occur, followed by processive long-range resection that commits the pathway to HR. The 3′ single-stranded DNA (ssDNA) filament, bound by the DNA strand exchange protein RecA/Rad51, pairs with the homologous sequence on the template and thus forms a D-loop. The 3′ tail serves as a primer for a repair polymerase and is extended by using the homologous strand as template, a process that “restores” the disrupted genetic information. Various pathways involve the displacement of the free strand, the capture of the second strand to form Holliday junctions, or the cleavage of the D-loop (Mehta and Haber 2014).In this review, we focus on structural aspects of the early steps in homologous recombination. Of particular interest is the Mre11-Rad50-Nbs1 (MRN) complex, which recognizes DSBs, performs initial resection, and sets off a DNA damage response (DDR) signaling network. We further discuss the nucleases and helicases that are involved in long-range resection. Recent reviews of later steps in HR, which are not covered here, have been published elsewhere (Amunugama and Fishel 2012; Chiruvella et al. 2013; Jasin and Rothstein 2013).  相似文献   

3.
4.
The eukaryotic cytoskeleton evolved from prokaryotic cytomotive filaments. Prokaryotic filament systems show bewildering structural and dynamic complexity and, in many aspects, prefigure the self-organizing properties of the eukaryotic cytoskeleton. Here, the dynamic properties of the prokaryotic and eukaryotic cytoskeleton are compared, and how these relate to function and evolution of organellar networks is discussed. The evolution of new aspects of filament dynamics in eukaryotes, including severing and branching, and the advent of molecular motors converted the eukaryotic cytoskeleton into a self-organizing “active gel,” the dynamics of which can only be described with computational models. Advances in modeling and comparative genomics hold promise of a better understanding of the evolution of the self-organizing cytoskeleton in early eukaryotes, and its role in the evolution of novel eukaryotic functions, such as amoeboid motility, mitosis, and ciliary swimming.The eukaryotic cytoskeleton organizes space on the cellular scale and this organization influences almost every process in the cell. Organization depends on the mechanochemical properties of the cytoskeleton that dynamically maintain cell shape, position organelles, and macromolecules by trafficking, and drive locomotion via actin-rich cellular protrusions, ciliary beating, or ciliary gliding. The eukaryotic cytoskeleton is best described as an “active gel,” a cross-linked network of polymers (gel) in which many of the links are active motors that can move the polymers relative to each other (Karsenti et al. 2006). Because prokaryotes have only cytoskeletal polymers but lack motor proteins, this “active gel” property clearly sets the eukaryotic cytoskeleton apart from prokaryotic filament systems.Prokaryotes contain elaborate systems of several cytomotive filaments (Löwe and Amos 2009) that share many structural and dynamic features with eukaryotic actin filaments and microtubules (Löwe and Amos 1998; van den Ent et al. 2001). Prokaryotic cytoskeletal filaments may trace back to the first cells and may have originated as higher-order assemblies of enzymes (Noree et al. 2010; Barry and Gitai 2011). These cytomotive filaments are required for the segregation of low copy number plasmids, cell rigidity and cell-wall synthesis, cell division, and occasionally the organization of membranous organelles (Komeili et al. 2006; Thanbichler and Shapiro 2008; Löwe and Amos 2009). These functions are performed by dynamic filament-forming systems that harness the energy from nucleotide hydrolysis to generate forces either via bending or polymerization (Löwe and Amos 2009; Pilhofer and Jensen 2013). Although the identification of actin and tubulin homologs in prokaryotes is a major breakthrough, we are far from understanding the origin of the structural and dynamic complexity of the eukaryotic cytoskeleton.Advances in genome sequencing and comparative genomics now allow a detailed reconstruction of the cytoskeletal components present in the last common ancestor of eukaryotes. These studies all point to an ancestrally complex cytoskeleton, with several families of motors (Wickstead and Gull 2007; Wickstead et al. 2010) and filament-associated proteins and other regulators in place (Jékely 2003; Richards and Cavalier-Smith 2005; Rivero and Cvrcková 2007; Chalkia et al. 2008; Eme et al. 2009; Fritz-Laylin et al. 2010; Eckert et al. 2011; Hammesfahr and Kollmar 2012). Genomic reconstructions and comparative cell biology of single-celled eukaryotes (Raikov 1994; Cavalier-Smith 2013) allow us to infer the cellular features of the ancestral eukaryote. These analyses indicate that amoeboid motility (Fritz-Laylin et al. 2010; although, see Cavalier-Smith 2013), cilia (Cavalier-Smith 2002; Mitchell 2004; Jékely and Arendt 2006; Satir et al. 2008), centrioles (Carvalho-Santos et al. 2010), phagocytosis (Cavalier-Smith 2002; Jékely 2007; Yutin et al. 2009), a midbody during cell division (Eme et al. 2009), mitosis (Raikov 1994), and meiosis (Ramesh et al. 2005) were all ancestral eukaryotic cellular features. The availability of functional information from organisms other than animals and yeasts (e.g., Chlamydomonas, Tetrahymena, Trypanosoma) also allow more reliable inferences about the ancestral functions of cytoskeletal components (i.e., not only their ancestral presence or absence) and their regulation (Demonchy et al. 2009; Lechtreck et al. 2009; Suryavanshi et al. 2010).The ancestral complexity of the cytoskeleton in eukaryotes leaves a huge gap between prokaryotes and the earliest eukaryote we can reconstruct (provided that our rooting of the tree is correct) (Cavalier-Smith 2013). Nevertheless, we can attempt to infer the series of events that happened along the stem lineage, leading to the last common ancestor of eukaryotes. Meaningful answers will require the use of a combination of gene family history reconstructions (Wickstead and Gull 2007; Wickstead et al. 2010), transition analyses (Cavalier-Smith 2002), and computer simulations relevant to cell evolution (Jékely 2008).  相似文献   

5.
Proteins to be secreted are transported from the endoplasmic reticulum (ER) to the Golgi apparatus. The transport of these proteins requires the localization and activity of proteins that create ER exit sites, coat proteins to collect cargo and to reshape the membrane into a transport container, and address labels—SNARE proteins—to target the vesicles specifically to the Golgi apparatus. In addition some proteins may need export chaperones or export receptors to enable their exit into transport vesicles. ER export factors, SNAREs, and misfolded Golgi-resident proteins must all be retrieved from the Golgi to the ER again. This retrieval is also part of the organellar homeostasis pathway essential to maintaining the identity of the ER and of the Golgi apparatus. In this review, I will discuss the different processes in retrograde transport from the Golgi to the ER and highlight the mechanistic insights we have obtained in the last couple of years.Proteins that are exposed at the plasma membrane or populate a membrane-bounded organelle are synthesized into the endoplasmic reticulum (ER). In the ER, the folding of these proteins takes place and posttranslational modifications such as N-glycosylation and disulfide bridge formation occur. Upon adopting a suitable, often correct, conformation, proteins destined to locations beyond the ER are concentrated at so-called ER exit sites (ERES) and incorporated into nascent COPII-coated vesicles. These COPII vesicles eventually bud off the ER membrane and are transported to the Golgi (in yeast, Drosophila, and C. elegans) or the ER-Golgi intermediate compartment (in mammalian cells) (Schweizer et al. 1990; Kondylis and Rabouille 2003; Spang 2009; Witte et al. 2011).It is assumed that the vesicle coat is at least partially destabilized through the hydrolysis of GTP by the small GTPase Sar1 (Oka and Nakano 1994; Springer et al. 1999). However, some of the destabilized coat components have to stay on the vesicle until it has reached the Golgi apparatus because coat components participate in the recognition and the tethering process (Barlowe 1997; Cai et al. 2007; Lord et al. 2011; Zong et al. 2012). Subsequently, SNARE proteins on the vesicles (v-SNAREs) zipper up with cognate SNAREs on the Golgi (target SNAREs, t-SNAREs) to drive membrane fusion (Hay et al. 1998; Cao and Barlowe 2000; Parlati et al. 2002). The content of the ER-derived COPII vesicles is thereby released into the lumen of the cis-cisterna of the Golgi apparatus. Most proteins will continue their journey through the Golgi apparatus and encounter further modifications such as extension of the glycosylation tree or lipidation. However, some proteins, especially those involved in the fusion process, i.e., the v-SNAREs or proteins that act as export factors of the ER, such as Vma21, which is essential for export of the correctly folded and assembled V0 sector of the V-ATPase, need to be recycled back to the ER for another round of transport (Ballensiefen et al. 1998; Malkus et al. 2004). Moreover, cis-Golgi proteins are returned to the ER for quality/functional control (Todorow et al. 2000; Sato et al. 2004; Valkova et al. 2011). Finally, some ER-resident proteins, such as the ER Hsp70 chaperone BiP/Kar2, can escape the ER, but are captured at the cis-Golgi by the H/KDEL receptor Erd2 and returned to the ER (Lewis et al. 1990; Semenza et al. 1990; Aoe et al. 1997).Unfortunately, the retrograde transport route is also hijacked by toxins. For example, endocytosed cholera toxin subunit A contains a KDEL sequence and can thereby exploit the system to access the ER (Majoul et al. 1996, 1998). From there, it is retro-translocated into the cytoplasm where it can exert its detrimental function.  相似文献   

6.
Epithelial cell–cell junctions are formed by apical adherens junctions (AJs), which are composed of cadherin adhesion molecules interacting in a dynamic way with the cortical actin cytoskeleton. Regulation of cell–cell junction stability and dynamics is crucial to maintain tissue integrity and allow tissue remodeling throughout development. Actin filament turnover and organization are tightly controlled together with myosin-II activity to produce mechanical forces that drive the assembly, maintenance, and remodeling of AJs. In this review, we will discuss these three distinct stages in the lifespan of cell–cell junctions, using several developmental contexts, which illustrate how mechanical forces are generated and transmitted at junctions, and how they impact on the integrity and the remodeling of cell–cell junctions.Cell–cell junction formation and remodeling occur repeatedly throughout development. Epithelial cells are linked by apical adherens junctions (AJs) that rely on the cadherin-catenin-actin module. Cadherins, of which epithelial E-cadherin (E-cad) is the most studied, are Ca2+-dependent transmembrane adhesion proteins forming homophilic and heterophilic bonds in trans between adjacent cells. Cadherins and the actin cytoskeleton are mutually interdependent (Jaffe et al. 1990; Matsuzaki et al. 1990; Hirano et al. 1992; Oyama et al. 1994; Angres et al. 1996; Orsulic and Peifer 1996; Adams et al. 1998; Zhang et al. 2005; Pilot et al. 2006). This has long been attributed to direct physical interaction of E-cad with β-catenin (β-cat) and of α-catenin (α-cat) with actin filaments (for reviews, see Gumbiner 2005; Leckband and Prakasam 2006; Pokutta and Weis 2007). Recently, biochemical and protein dynamics analyses have shown that such a link may not exist and that instead, a constant shuttling of α-cat between cadherin/β-cat complexes and actin may be key to explain the dynamic aspect of cell–cell adhesion (Drees et al. 2005; Yamada et al. 2005). Regardless of the exact nature of this link, several studies show that AJs are indeed physically attached to actin and that cadherins transmit cortical forces exerted by junctional acto-myosin networks (Costa et al. 1998; Sako et al. 1998; Pettitt et al. 2003; Dawes-Hoang et al. 2005; Cavey et al. 2008; Martin et al. 2008; Rauzi et al. 2008). In addition, physical association depends in part on α-cat (Cavey et al. 2008) and additional intermediates have been proposed to represent alternative missing links (Abe and Takeichi 2008) (reviewed in Gates and Peifer 2005; Weis and Nelson 2006). Although further work is needed to address the molecular nature of cadherin/actin dynamic interactions, association with actin is crucial all throughout the lifespan of AJs. In this article, we will review our current understanding of the molecular mechanisms at work during three different developmental stages of AJs biology: assembly, stabilization, and remodeling, with special emphasis on the mechanical forces controlling AJs integrity and development.  相似文献   

7.
8.
Epithelia form physical barriers that separate the internal milieu of the body from its external environment. The biogenesis of functional epithelia requires the precise coordination of many cellular processes. One of the key events in epithelial biogenesis is the establishment of cadherin-dependent cell–cell contacts, which initiate morphological changes and the formation of other adhesive structures. Cadherin-mediated adhesions generate intracellular signals that control cytoskeletal reorganization, polarity, and vesicle trafficking. Among such signaling pathways, those involving small GTPases play critical roles in epithelial biogenesis. Assembly of E-cadherin activates several small GTPases and, in turn, the activated small GTPases control the effects of E-cadherin-mediated adhesions on epithelial biogenesis. Here, we focus on small GTPase signaling at E-cadherin-mediated epithelial junctions.Cell–cell adhesions are involved in a diverse range of physiological processes, including morphological changes during tissue development, cell scattering, wound healing, and synaptogenesis (Adams and Nelson 1998; Gumbiner 2000; Halbleib and Nelson 2006; Takeichi 1995; Tepass et al. 2000). In epithelial cells, cell–cell adhesions are classified into three kinds of adhesions: adherens junction, tight junction, and desmosome (for more details, see Meng and Takeichi 2009, Furuse 2009, and Delva et al. 2009, respectively). A key event in epithelial polarization and biogenesis is the establishment of cadherin-dependent cell–cell contacts. Cadherins belong to a large family of adhesion molecules that require Ca2+ for their homophilic interactions (Adams and Nelson 1998; Blanpain and Fuchs 2009; Gumbiner 2000; Hartsock and Nelson 2008; Takeichi 1995; Tepass et al. 2000). Cadherins form transinteraction on the surface of neighboring cells (for details, see Shapiro and Weis 2009). For the development of strong and rigid adhesions, cadherins are clustered concomitantly with changes in the organization of the actin cytoskeleton (Tsukita et al. 1992). Classical cadherins are required, but not sufficient, to initiate cell–cell contacts, and other adhesion protein complexes subsequently assemble (for details, see Green et al. 2009). These complexes include the tight junction, which controls paracellular permeability, and desmosomes, which support the structural continuum of epithelial cells. A fundamental problem is to understand how these diverse cellular processes are regulated and coordinated. Intracellular signals, generated when cells attach with one another, mediate these complicated processes.Several signaling pathways upstream or downstream of cadherin-mediated cell–cell adhesions have been identified (Perez-Moreno et al. 2003) (see also McCrea et al. 2009). Among these pathways, small GTPases including the Rho and Ras family GTPases play critical roles in epithelial biogenesis and have been studied extensively. Many key morphological and functional changes are induced when these small GTPases act at epithelial junctions, where they mediate an interplay between cell–cell adhesion molecules and fundamental cellular processes including cytoskeletal activity, polarity, and vesicle trafficking. In addition to these small GTPases, Ca2+ signaling and phosphorylation of cadherin complexes also play pivotal roles in the formation and maintenance of cadherin-mediated adhesions. Here, we focus on signaling pathways involving the small GTPases in E-cadherin-mediated cell–cell adhesions. Other signaling pathways are described in recent reviews (Braga 2002; Fukata and Kaibuchi 2001; Goldstein and Macara 2007; McLachlan et al. 2007; Tsukita et al. 2008; Yap and Kovacs 2003; see also McCrea et al. 2009).  相似文献   

9.
The Desmosome     
Desmosomes are intercellular junctions that tether intermediate filaments to the plasma membrane. Desmogleins and desmocollins, members of the cadherin superfamily, mediate adhesion at desmosomes. Cytoplasmic components of the desmosome associate with the desmosomal cadherin tails through a series of protein interactions, which serve to recruit intermediate filaments to sites of desmosome assembly. These desmosomal plaque components include plakoglobin and the plakophilins, members of the armadillo gene family. Linkage to the cytoskeleton is mediated by the intermediate filament binding protein, desmoplakin, which associates with both plakoglobin and plakophilins. Although desmosomes are critical for maintaining stable cell–cell adhesion, emerging evidence indicates that they are also dynamic structures that contribute to cellular processes beyond that of cell adhesion. This article outlines the structure and function of the major desmosomal proteins, and explores the contributions of this protein complex to tissue architecture and morphogenesis.The desmosome is an adhesive intercellular junction that is crucial to tissues that experience mechanical stress, such as the myocardium, bladder, gastrointestinal mucosa, and skin (Getsios et al. 2004b; Holthofer et al. 2007). The desmosome was first observed in the spinous layer of epidermis by the Italian pathologist Giulio Bizzozero (1846–1901). Bizzozero''s observations of these small dense nodules, subsequently named “nodes of Bizzozero,” led him to the insightful interpretation of these structures as adhesive cell–cell contact points. The term desmosome was later coined by Josef Schaffer in 1920 and is derived from the Greek words “desmo,” meaning bond or fastening, and “soma,” meaning body (Wells 2005; Calkins and Setzer 2007). The introduction of electron microscopy yielded a series of advances by Porter, Odland, and Kelly in the 1950s and 1960s, which revealed desmosome organization at the ultrastructural level. These studies and others indicated that the desmosome can be divided into three morphologically identifiable zones: the extracellular core region (desmoglea), the outer dense plaque (ODP), and the inner dense plaque (IDP) (Fig. 1A) (Kowalczyk et al. 1994; Schmidt et al. 1994; Green and Jones 1996; North et al. 1999; Garrod and Chidgey 2008).Open in a separate windowFigure 1.A model for the structure of desmosomes. (A) Electron micrograph of a desmosome. (B) Schematic of desmosomal proteins and relative distance from the plasma membrane (PM). The desmosomal cadherins, the desmogleins and desmocollins, extend into extracellular core and outer dense plaque (ODP) to establish contact and adhere to neighboring cells in a Ca2+-dependent manner. The cadherin cytoplasmic tails associate linker proteins, plakoglobin (PG), the plakophilins (PKP), and desmoplakin (DP). DP binds to keratin intermediate filaments (KIF) within the inner dense plaque (IDP), serving to tether the intermediate filaments to the plasma membrane. (Adapted with permission from Kottke et al. 2006.)In the mid 1970s, Skerrow and Matoltsy (Skerrow and Matoltsy 1974a; Skerrow and Matoltsy 1974b) advanced the field by isolating desmosomes using biochemical approaches (Bass-Zubek and Green 2007).These landmark studies provided a foundation for the Franke and Steinberg laboratories to characterize the transmembrane glycoproteins and cytoplasmic plaque proteins that linked the structure to the intermediate filament cytoskeleton, and to develop immunological tools for localizing specific components (Franke et al. 1981; Kapprell et al. 1985; Steinberg et al. 1987). Collectively, these and other studies shaped our current view of how desmosomal components are organized.The transmembrane glycoproteins, termed desmogleins and desmocollins (Garrod and Chidgey 2008), represent separate subfamilies of the cadherin superfamily of calcium dependent adhesion molecules. The extracellular domains of the desmogleins and desmocollins mediate adhesion, whereas the cytoplasmic tails of these cadherins associate with the desmosomal plaque proteins. The outer dense plaque consists of the cytoplasmic tails of the desmosomal cadherins, which bind to members of the armadillo and plakin family of linker proteins (Kowalczyk et al. 1994; Getsios et al. 2004b; Garrod and Chidgey 2008). Plakoglobin, a member of the armadillo family, binds directly to the cytoplasmic tails of both the desmogleins and the desmocollins (Wahl et al. 1996; Witcher et al. 1996). Desmoplakin, a member of the plakin family, interacts with both plakoglobin and another subgroup of armadillo family proteins, the plakophilins (Cowin and Burke 1996). Finally, the interaction between desmoplakin and the keratin filaments forms the inner dense plaque, tethering the cytoskeletal network to the adhesion complex (Fig. 1B) (Kowalczyk et al. 1994; Getsios et al. 2004b; Garrod and Chidgey 2008).The following sections of this article describe the structural and functional characteristics of the major desmosomal proteins. In addition, we discuss differences in tissue expression patterns of desmosomal proteins and the role of desmosomes in human disease. A comprehensive review of additional proteins found to regulate or associate with desmosomes is provided elsewhere (Holthofer et al. 2007) and discussion of desmosome dynamics is provided in Green et al. 2009.  相似文献   

10.
The roles of clathrin, its regulators, and the ESCRT (endosomal sorting complex required for transport) proteins are well defined in endocytosis. These proteins can also participate in intracellular pathways that are independent of endocytosis and even independent of the membrane trafficking function of these proteins. These nonendocytic functions involve unconventional biochemical interactions for some endocytic regulators, but can also exploit known interactions for nonendocytic functions. The molecular basis for the involvement of endocytic regulators in unconventional functions that influence the cytoskeleton, cell cycle, signaling, and gene regulation are described here. Through these additional functions, endocytic regulators participate in pathways that affect infection, glucose metabolism, development, and cellular transformation, expanding their significance in human health and disease.The discovery and characterization of clathrin (Pearse 1975) initiated molecular definition of the many endocytosis regulators described in this collection, which mediate the clathrin-dependent and -independent pathways for membrane internalization (see Kirchhausen et al. 2014; Mayor et al. 2014; Merrifield and Kaksonen 2014). In accompanying reviews, we have seen how these endocytic pathways influence nutrition and metabolism (see Antonescu et al. 2014), signal transduction (see Bökel and Brand 2014; Di Fiore and von Zastrow 2014), neuronal function (see Morgan et al. 2013; Cosker and Segal 2014), infection and immunity (see ten Broeke et al. 2013; Cossart and Helenius 2014), tissue polarity and development (see Eaton and Martin-Belmonte 2014; Gonzalez-Gaitan and Jülicher 2014), and migration and metastasis (see Mellman and Yarden 2013). Recently, it has been established that some endocytic regulators have molecular properties that expand their functions beyond endocytosis. These include molecular interactions that affect the microtubule and actin cytoskeletons, nuclear translocation that influences gene regulation, and the formation of membrane-associated scaffolds that serve as signaling and sorting platforms. Through these diverse nonendocytic functions, endocytosis regulators play additional roles in cell division, pathogen infection, cell adhesion, and oncogenesis. In this article, we review the nonconventional behavior of endocytic regulators, first discussing the molecular properties that enable their moonlighting functions and then discussing the cellular processes and disease states that are influenced by these functions.  相似文献   

11.
Over the past several decades, the proliferation and integration of adult-born neurons into existing hippocampal circuitry has been implicated in a wide range of behaviors, including novelty recognition, pattern separation, spatial learning, anxiety behaviors, and antidepressant response. In this review, we suggest that the diversity in behavioral requirements for new neurons may be partly caused by separate functional roles of individual neurogenic niches. Growing evidence shows that the hippocampal formation can be compartmentalized not only along the classic trisynaptic circuit, but also along a longitudinal septotemporal axis. We suggest that subpopulations of hippocampal adult-born neurons may be specialized for distinct mnemonic- or mood-related behavioral tasks. We will examine the literature supporting a functional and anatomical dissociation of the hippocampus along the longitudinal axis and discuss techniques to functionally dissect the roles of adult-born hippocampal neurons in these distinct subregions.Since the presence of dividing cells in the mostly postmitotic adult brain was first described (Altman and Das 1965), the generation of new neurons in adulthood has been proposed to be involved in a variety of behaviors (Doetsch and Hen 2005; Becker and Wojtowicz 2007; Sahay and Hen 2007; Deng et al. 2010; Ming and Song 2011; Miller and Hen 2014). Adult neurogenesis in the healthy mammalian brain is consistently seen in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). Recent studies have implicated hippocampal neurogenesis in learning- and memory-related tasks, such as contextual discrimination and spatial navigation and, specifically, in behavioral pattern separation (Clelland et al. 2009; Sahay et al. 2011; Nakashiba et al. 2012; Niibori et al. 2012; see also reviews in Deng et al. 2010; Ming and Song 2011; Marin-Burgin and Schinder 2012), but also in some behavioral effects of antidepressants (Santarelli et al. 2003; see also reviews in Sahay and Hen 2007; Kheirbek et al. 2012; Tanti and Belzung 2013). However, the exact role of adult hippocampal neurogenesis in some of these behaviors has been debated as some studies have shown no effects of altering adult neurogenesis on spatial navigation or antidepressant response. Proposed explanations have included differences in the behavioral tasks used to measure cognition or emotion, motivational state of subjects, species differences, or in how neurogenesis is defined, either as proliferation, survival, or differentiation (see reviews in Zhao et al. 2008; Aimone et al. 2011; Petrik et al. 2012b; Miller and Hen 2014).It must also be noted, however, that these hippocampal neurons are not born into a singular structure. Work in the past several decades has shown that the hippocampus can be divided, not only along the classic trisynaptic loop, but also longitudinally along a septotemporal axis. The septal (dorsal in rodents; posterior in primates) and temporal (ventral in rodents; anterior in primates) poles, as well as potential intermediate zones of the hippocampus, have different anatomic connections and electrophysiological properties, express a gradient of molecular markers, and play different functional roles, such as performance in spatial learning tasks and stress responses (see reviews in Moser and Moser 1998; Fanselow and Dong 2010). Consequently, adult-born neurons in the hippocampal DG may also be segregated along this longitudinal axis, and conflicting functional roles for neurogenesis may be a result of attempting to examine hippocampal neurogenesis as a unitary phenomenon. It is possible that there are intrinsic, cell-autonomous differences in adult-born neurons generated at opposite poles of the DG. An alternative, although not mutually exclusive, hypothesis is that progenitor cells are initially identical, but differentiate in a dissimilar manner as a result of integration into distinct network circuitry. We will, therefore, first discuss heterogeneity of the hippocampus along its longitudinal axis before reviewing differences in neurogenesis between the septal and temporal poles of the DG. As these topics have been reviewed extensively elsewhere (Moser and Moser 1998; Deng et al. 2010; Fanselow and Dong 2010; Koehl and Abrous 2011; Samuels and Hen 2011; Kheirbek et al. 2012; Petrik et al. 2012b), we will not try to exhaustively cover all the current literature. Rather, we attempt to gather key studies examining a septotemporal gradient of the hippocampus and hippocampal neurogenesis. We will then suggest possible approaches to examine neurogenesis in specific subregions of the hippocampal DG. Finally, a short section will examine segregation of the DG along its transverse axis.  相似文献   

12.
The zebrafish is a premier vertebrate model system that offers many experimental advantages for in vivo imaging and genetic studies. This review provides an overview of glial cell types in the central and peripheral nervous system of zebrafish. We highlight some recent work that exploited the strengths of the zebrafish system to increase the understanding of the role of Gpr126 in Schwann cell myelination and illuminate the mechanisms controlling oligodendrocyte development and myelination. We also summarize similarities and differences between zebrafish radial glia and mammalian astrocytes and consider the possibility that their distinct characteristics may represent extremes in a continuum of cell identity. Finally, we focus on the emergence of zebrafish as a model for elucidating the development and function of microglia. These recent studies have highlighted the power of the zebrafish system for analyzing important aspects of glial development and function.Following the pioneering work of George Streisinger in the early 1980s, the zebrafish has emerged as a premier vertebrate model system (Streisinger et al. 1981). A key strength of the zebrafish is that the embryos and early larvae are transparent, allowing exquisite cellular analysis of many dynamic processes, including cell migration, axonal pathfinding, and myelination, among many others (e.g., Gilmour et al. 2002; Lyons et al. 2005; Czopka et al. 2013). The zebrafish also has many advantages for large-scale genetic studies, including relatively small size and rapid development, high fecundity, and the ability to manipulate the ploidy of gametes and early embryos (Kimmel 1989). Through the 1980s and early 1990s, insightful studies of several interesting mutations elegantly exploited these experimental advantages (e.g., Kimmel et al. 1989; Ho and Kane 1990; Hatta et al. 1991; Grunwald and Eisen 2002), attracting many researchers from other fields to the zebrafish system. Following the explosion of interest in the zebrafish in the 1990s, advances in many areas have added to the strengths of the system, including large-scale screens that identified thousands of new mutations (Driever et al. 1996; Haffter et al. 1996), rapid transgenesis (Kawakami et al. 2004), new methods for imaging and tracking all cells during development (Huisken 2012), genetic mapping and sequencing to identify genes and mutated loci (Postlethwait et al. 1994; Howe et al. 2013), optogenetic methods to control neural activity (Portugues et al. 2013), the advent of targeted nucleases to create mutations in genes of interest (Huang et al. 2011; Sander et al. 2011; Bedell et al. 2012; Chang et al. 2013; Hwang et al. 2013), and small molecule screening approaches to isolate compounds with novel biological activities in vivo (Peterson and Fishman 2011).Many fundamental similarities in physiology and body plan unite the zebrafish and other vertebrates (Kimmel 1989). In addition, analysis of genes and genomes has revealed that sequence, expression, and function of many genes are conserved among zebrafish and other vertebrates (Postlethwait and Talbot 1997; Howe et al. 2013). Thus, insights from studies in zebrafish will apply broadly to other vertebrates, including humans. On the other hand, there are important genetic, genomic, and physiological differences among vertebrates. It is, therefore, important to keep possible differences in mind and to recognize that analyzing the diversity among different species may enhance overall understanding of important processes. For example, zebrafish and other teleosts have a much more extensive regenerative ability than mammals, so that studies of fin, heart, and spinal cord regeneration in zebrafish may suggest avenues toward new therapeutic approaches in humans (Gemberling et al. 2013; Becker and Becker 2014).In this review, we provide an overview of different types of glia in the zebrafish, with a focus on some recent studies that highlight the power of the zebrafish system to analyze different aspects of glial development and function.  相似文献   

13.
14.
The TAM receptors—Tyro3, Axl, and Mer—comprise a unique family of receptor tyrosine kinases, in that as a group they play no essential role in embryonic development. Instead, they function as homeostatic regulators in adult tissues and organ systems that are subject to continuous challenge and renewal throughout life. Their regulatory roles are prominent in the mature immune, reproductive, hematopoietic, vascular, and nervous systems. The TAMs and their ligands—Gas6 and Protein S—are essential for the efficient phagocytosis of apoptotic cells and membranes in these tissues; and in the immune system, they act as pleiotropic inhibitors of the innate inflammatory response to pathogens. Deficiencies in TAM signaling are thought to contribute to chronic inflammatory and autoimmune disease in humans, and aberrantly elevated TAM signaling is strongly associated with cancer progression, metastasis, and resistance to targeted therapies.The name of the TAM family is derived from the first letter of its three constituents—Tyro3, Axl, and Mer (Prasad et al. 2006). As detailed in Figure 1, members of this receptor tyrosine kinase (RTK) family were independently identified by several different groups and appear in the early literature under multiple alternative names. However, Tyro3, Axl, and Mer (officially c-Mer or MerTK for the protein, Mertk for the gene) have now been adopted as the NCBI designations. The TAMs were first grouped into a distinct RTK family (the Tyro3/7/12 cluster) in 1991, through PCR cloning of their kinase domains (Lai and Lemke 1991). The isolation of full-length cDNAs for Axl (O''Bryan et al. 1991), Mer (Graham et al. 1994), and Tyro3 (Lai et al. 1994) confirmed their segregation into a structurally distinctive family of orphan RTKs (Manning et al. 2002b). The two ligands that bind and activate the TAMs—Gas6 and Protein S (Pros1)—were identified shortly thereafter (Ohashi et al. 1995; Stitt et al. 1995; Mark et al. 1996; Nagata et al. 1996).Open in a separate windowFigure 1.TAM receptors and ligands. The TAM receptors (red) are Tyro3 (Lai and Lemke 1991; Lai et al. 1994)—also designated Brt (Fujimoto and Yamamoto 1994), Dtk (Crosier et al. 1994), Rse (Mark et al. 1994), Sky (Ohashi et al. 1994), and Tif (Dai et al. 1994); Axl (O''Bryan et al. 1991)—also designated Ark (Rescigno et al. 1991), Tyro7 (Lai and Lemke 1991), and Ufo (Janssen et al. 1991); and Mer (Graham et al. 1994)—also designated Eyk (Jia and Hanafusa 1994), Nyk (Ling and Kung 1995), and Tyro12 (Lai and Lemke 1991). The TAMs are widely expressed by cells of the mature immune, nervous, vascular, and reproductive systems. The TAM ligands (blue) are Gas6 and Protein S (Pros1). The carboxy-terminal SHBG domains of the ligands bind to the immunoglobulin (Ig) domains of the receptors, induce dimerization, and activate the TAM tyrosine kinases. When γ-carboxylated in a vitamin-K-dependent reaction, the amino-terminal Gla domains of the dimeric ligands bind to the phospholipid phosphatidylserine expressed on the surface on an apposed apoptotic cell or enveloped virus. See text for details. (From Lemke and Burstyn-Cohen 2010; adapted, with permission, from the authors.)Subsequent progress on elucidating the biological roles of the TAM receptors was considerably slower and ultimately required the derivation of mouse loss-of-function mutants (Camenisch et al. 1999; Lu et al. 1999). The fact that Tyro3−/−, Axl−/−, and Mer−/− mice are all viable and fertile permitted the generation of a complete TAM mutant series that included all possible double mutants and even triple mutants that lack all three receptors (Lu et al. 1999). Remarkably, these Tyro3−/−Axl−/−Mer−/− triple knockouts (TAM TKOs) are viable, and for the first 2–3 wk after birth, superficially indistinguishable from their wild-type counterparts (Lu et al. 1999). Because many RTKs play essential roles in embryonic development, even single loss-of-function mutations in RTK genes often result in an embryonic-lethal phenotype (Gassmann et al. 1995; Lee et al. 1995; Soriano 1997; Arman et al. 1998). The postnatal viability of mice in which an entire RTK family is ablated completely—the TAM TKOs can survive for more than a year (Lu et al. 1999)—is therefore highly unusual. Their viability notwithstanding, the TAM mutants go on to develop a plethora of phenotypes, some of them debilitating (Camenisch et al. 1999; Lu et al. 1999; Lu and Lemke 2001; Scott et al. 2001; Duncan et al. 2003; Prasad et al. 2006). Almost without exception, these phenotypes are degenerative in nature and reflect the loss of TAM signaling activities in adult tissues that are subject to regular challenge, renewal, and remodeling. These activities are the subject of this review.  相似文献   

15.
Since its first visualization in 1898, the Golgi has been a topic of intense morphological research. A typical mammalian Golgi consists of a pile of stapled cisternae, the Golgi stack, which is a key station for modification of newly synthesized proteins and lipids. Distinct stacks are interconnected by tubules to form the Golgi ribbon. At the entrance site of the Golgi, the cis-Golgi, vesicular tubular clusters (VTCs) form the intermediate between the endoplasmic reticulum and the Golgi stack. At the exit site of the Golgi, the trans-Golgi, the trans-Golgi network (TGN) is the major site of sorting proteins to distinct cellular locations. Golgi functioning can only be understood in light of its complex architecture, as was revealed by a range of distinct electron microscopy (EM) approaches. In this article, a general concept of mammalian Golgi architecture, including VTCs and the TGN, is described.In 1898 Camillo Golgi was the first to visualize, describe, and ultimately name the Golgi complex. Using a histochemical impregnation method causing the reduction and deposition of silver, he defined the Golgi in neuronal cells as a reticular apparatus stained by the “black reaction” (Golgi 1898). In the 1950s, the first ultrastructural images of the Golgi were revealed using the then newly developed electron microscope (EM) (Dalton 1954; Farquhar and Rinehart 1954; Sjostrand and Hanzon 1954; Dalton and Felix 1956), reviewed by Farquhar and Palade (1981). In 1961, the thiamine pyrophosphatase reaction developed by Novikoff and Goldfischer allowed cytochemical labeling of Golgi membranes, which revealed the ubiquitous cellular distribution of this organelle (Novikoff and Goldfischer 1961). In the many years of ultrastructural research that have followed, the visualization of the Golgi has gone hand-in-hand with the developing EM techniques.The intriguing structural complexity of the Golgi has made it one of the most photographed organelles in the cell. However, a full understanding of Golgi architecture is hard to deduce from the ultrathin (70–100 nm) sections used in standard transmission EM preparations. Rambourg and Clermont (1974) were the first to investigate the Golgi in three dimensions (3D), using stereoscopy (Rambourg 1974). In this approach a “thick” (150–200 nm), EM section is photographed at two distinct angles, after which the pairs of photographs are viewed with a stereoscope. Over the years, stereoscopy was applied to a variety of cells and has greatly contributed to our current understanding of Golgi architecture (Lindsey and Ellisman 1985; Rambourg and Clermont 1990; Clermont et al. 1994; Clermont et al. 1995). An alternative approach to study 3D structure is serial sectioning, by which a series of adjacent (serial) thin sections are collected. The Golgi can be followed throughout these sections and be constructed into a 3D model (Beams and Kessel 1968; Dylewski et al. 1984; Rambourg and Clermont 1990). In the nineties, 3D-EM was boosted by the introduction of high-voltage, dual axis 3D electron tomography (Ladinsky et al. 1999; Koster and Klumperman 2003; Marsh 2005; Marsh 2007; Noske et al. 2008), which allows the analysis of sections of up to 3–4 µm with a 4–6 nm resolution in the z-axis. The sections are photographed in a tilt series of different angles, which are reconstructed into a 3D tomogram that allows one to “look beyond” a given structure and reveals how it relates to other cellular compartments.Membranes with a similar appearance can differ in protein content and function. These differences are revealed by protein localization techniques. Therefore, in addition to the “classical” EM techniques providing ultrastructural details, EM methods that determine protein localization within the context of the cellular morphology have been crucial to further our understanding on the functional organization of the Golgi. For example, by enzyme-activity-based cytochemical staining the cis-to-trans-polarity in the distribution of Golgi glycosylation enzymes was discovered, reviewed by Farquhar and Palade (1981), which was key to understanding the functional organization of the Golgi stack in protein and lipid glycosylation. With the development of immunoEM methods, using antibodies, the need for enzyme activity for protein localization was overcome. This paved the way for the localization of a wide variety of proteins, such as the cytoplasmic coat complexes associated with the Golgi (Rabouille and Klumperman 2005).A logical next step in EM-based imaging of the Golgi would be to combine protein localization with 3D imaging, but this is technically challenging. A number of protocols enabling protein localization in 3D have recently been described (Trucco et al. 2004; Grabenbauer et al. 2005; Gaietta et al. 2006; Zeuschner et al. 2006; Meiblitzer-Ruppitsch et al. 2008), but these have only been applied in a limited manner to Golgi studies. Another approach that holds great potential for Golgi research is correlative microscopy (CLEM). Live cell imaging of fluorescent proteins has revolutionized cell biology by the real time visualization of dynamic events. However, live cell imaging does not reveal membrane complexity. By CLEM, live cells are first viewed by light microscopy and then prepared for EM (Mironov et al. 2008; van Rijnsoever et al. 2008). When coupled with the recent introduction of super resolution light microscopy techniques for real time imaging, the combination with EM for direct correlation with ultrastructural resolution has great potential (Hell 2009; Lippincott-Schwartz and Manley 2009).The 100th anniversary of the discovery of the Golgi, in 1998, triggered a wave of reviews on this organelle, including those focusing on Golgi architecture (Rambourg 1997; Farquhar and Palade 1998). More recent reviews that describe Golgi structure in great detail are provided by Marsh (2005) and Hua (2009). In this article, the most recent insights in mammalian Golgi architecture as revealed by distinct EM approaches are integrated into a general concept.  相似文献   

16.
17.
18.
Loss or inactivation of BLM, a helicase of the RecQ family, causes Bloom syndrome, a genetic disorder with a strong predisposition to cancer. Although the precise function of BLM remains unknown, genetic data has implicated BLM in the process of genetic recombination and DNA repair. Previously, we demonstrated that BLM can disrupt the RAD51-single-stranded DNA filament that promotes the initial steps of homologous recombination. However, this disruption occurs only if RAD51 is present in an inactive ADP-bound form. Here, we investigate interactions of BLM with the active ATP-bound form of the RAD51-single-stranded DNA filament. Surprisingly, we found that BLM stimulates DNA strand exchange activity of RAD51. In contrast to the helicase activity of BLM, this stimulation does not require ATP hydrolysis. These data suggest a novel BLM function that is stimulation of the RAD51 DNA pairing. Our results demonstrate the important role of the RAD51 nucleoprotein filament conformation in stimulation of DNA pairing by BLM.Mutations of BLM helicase cause Bloom syndrome (BS),2 a rare autosomal disorder, which is associated with stunted growth, facial sun sensitivity, immunodeficiency, fertility defects, and a greatly elevated incidence of many types of cancer occurring at an early age (1). BLM belongs to the highly conserved family of RecQ helicases that are required for the maintenance of genome integrity in all organisms (2, 3). There are five RecQ helicases in humans; mutations in three of them, WRN, RECQ4, and BLM, have been associated with the genetic abnormalities known as Werner, Rothmund-Thomson, and Bloom syndrome, respectively (4, 5). The cells from BS patients display genomic instability; the hallmark of BS is an increase in the frequency of sister chromatid and interhomolog exchanges (1, 6). Because homologous recombination (HR) is responsible for chromosomal exchanges, it is thought that BLM helicase functions in regulating HR (79). Also, BLM helicase is required for faithful chromosome segregation (10) and repair of stalled replication forks (11, 12), the processes that are linked to HR (1315). BLM was found to interact physically with RAD51, a key protein of HR (16) that catalyzes the central steps in HR including the search for homology and the exchange of strands between homologous ssDNA and dsDNA sequences (17). In cells, BLM forms nuclear foci, a subset of which co-localize with RAD51. Interestingly, the extent of RAD51 and BLM co-localization increases in response to ionizing radiation, indicating a possible role of BLM in the repair of DNA double-strand breaks (16).Biochemical studies suggest that BLM may perform several different functions in HR. BLM was shown to promote the dissociation of HR intermediates (D-loops) (1820), branch migration of Holliday junctions (21), and dissolution of double Holliday junctions acting in a complex with TopoIIIα and BLAP75 (2224). BLM may also facilitate DNA synthesis during the repair process by unwinding the DNA template in front of the replication fork (25). In addition, BLM and its yeast homolog Sgs1 may play a role at the initial steps of DNA double-strand break repair by participating in exonucleolitic resection of the DNA ends to generate DNA molecules with the 3′-ssDNA tails, a substrate for RAD51 binding (2629).In vivo, the process of HR is tightly regulated by various mechanisms (30). Whereas some proteins promote HR (14, 31), others inhibit this process, thereby preventing its untimely initiation (32, 33). Disruption of the Rad51-ssDNA nucleoprotein filament appears to be an especially important mechanism of controlling HR. This filament disruption activity was demonstrated for the yeast Srs2 helicase (34, 35) and human RECQ5 helicase (36). Recently, we found that BLM can also catalyze disruption of the RAD51-ssDNA filament (25). This disruption only occurs if the filament is present in an inactive ADP-bound form, e.g. in the presence of Mg2+. Conversion of RAD51 into an active ATP-bound form, e.g. in the presence of Ca2+ (37), renders the filament resistant to BLM disruption (25). In this study, we analyze the interactions of BLM with an active ATP-bound RAD51-ssDNA filament. Surprisingly, we found that BLM stimulates the DNA strand exchange activity of RAD51. Thus, depending on the conformational state of the RAD51 nucleoprotein filament, BLM may either inhibit or stimulate the DNA strand exchange activity of RAD51. Our analysis demonstrated that, in contrast to several known stimulatory proteins that act by promoting formation of the RAD51-ssDNA filament, BLM stimulates the DNA strand exchange activity of RAD51 at a later stage, during synapsis. Stimulation appears to be independent of the ATPase activity of BLM. We suggest that this stimulation of RAD51 may represent a novel function of BLM in homologous recombination.  相似文献   

19.
A decline in mitochondrial activity has been associated with aging and is a hallmark of many neurological diseases. Surveillance mechanisms acting at the molecular, organellar, and cellular level monitor mitochondrial integrity and ensure the maintenance of mitochondrial proteostasis. Here we will review the central role of mitochondrial chaperones and proteases, the cytosolic ubiquitin-proteasome system, and the mitochondrial unfolded response in this interconnected quality control network, highlighting the dual function of some proteases in protein quality control within the organelle and for the regulation of mitochondrial fusion and mitophagy.In all cellular compartments, correct protein folding is critical to maintain cellular homeostasis. In cases where proteins become misfolded or damaged, it is imperative that they are turned over and removed to prevent the formation of toxic folding intermediates or the accumulation of aggregates to levels that can be deleterious for the cell. Several neurodegenerative diseases share a common pathogenic mechanism, which involves the formation of fibrillar aggregates of a particular protein that can accumulate in the cytosol, the nucleus, or the mitochondria. Examples of this include accumulation of the amyloid-β peptide in Alzheimer’s disease (Kayed et al. 2003; Tanzi and Bertram 2005), accumulation of α-synuclein in Parkinson’s disease (Spillantini et al. 1997; Zarranz et al. 2004), and aggregation of a mutant form of the huntingtin protein caused by extended polyglutamine stretches in Huntington’s disease (DiFiglia et al. 1997). Although the exact mechanism of pathogenesis for these diseases remains unresolved, mitochondrial dysfunction is implicated in their progression, which may in turn be responsible for the loss of neurological cell populations because of their sensitivity and requirement for functional mitochondria (Rodolfo et al. 2010).The evolution of mitochondria began approximately 1.5 billion years ago after an α-proteobacterium was engulfed by a preeukaryotic cell (Gray et al. 1999). Since that time, mitochondria have retained two phospholipid bilayers that segregate two aqueous compartments, the mitochondrial intermembrane space (IMS) and the mitochondrial matrix (Palade 1953). Mitochondria are found in essentially all eukaryotic cells and play integral roles in a number of the cell''s metabolic pathways. For example, mitochondria are the key players in cellular ATP production through an elaborate respiratory chain network found in the organelles inner membrane (IM) (Mitchell 1961; Leonard and Schapira 2000). Mitochondria are also required for the β-oxidation of fatty acids, Fe-S biosynthesis, and Ca2+ homeostasis (Pinton et al. 1998; Rizzuto et al. 2000; Lill 2009; Modre-Osprian et al. 2009). Moreover, mitochondria are key regulators of programmed cell death and they participate in developmental processes as well as aging (Singh 2004; Green 2005).In contrast to early depictions of mitochondria as singular kidney bean shaped entities, it is now well established that mitochondria form elaborate, reticular networks in many tissues (Bereiter-Hahn 1990). The ability of mitochondria to form such networks arises from two major factors: (1) Specialized machineries in the mitochondrial outer membrane (OM) and the IM allow mitochondria to fuse and divide and (2) mitochondria are able to be shuttled along cytoskeletal elements (Anesti and Scorrano 2006; Hoppins et al. 2007). This plasticity of mitochondria ensures that they are able to respond to different cellular cues, which is potentially important for their numerous functions. In different cell types, mitochondria adopt varying morphologies (Kuznetsov et al. 2009). For example, in cultured fibroblasts mitochondria form extensive reticular networks, whereas in neuronal cells, mitochondria can be found enriched at areas of high-energy demand, including presynaptic termini, axon initial segments, and growth cones. Furthermore, in muscle cells, mitochondria adopt a very uniform intermyofibrillar conformation (Vendelin et al. 2005). The dynamic nature of mitochondria provides an explanation as to how they adopt varying organizations in different cell populations. The importance of mitochondrial networks is highlighted by the fact that mutations in components involved in maintaining mitochondrial dynamics results in neurodegenerative diseases (Chan 2006; Olichon et al. 2006; Knott et al. 2008; Martinelli and Rugarli 2010; Winklhofer and Haass 2010).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号