首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Many hypotheses on uroporphyrinogen biosynthesis advanced the possibility that 2-aminomethyltripyrranes formed by porphobilinogen deaminase are further substrates or uroporphyrinogen III co-synthase in the presence of porphobilinogen. These proposals were put to test by employing synthetic 2-aminomethyltripyrranes formally derived from porphobilinogen. None of them was found to be by itself a substrate of deaminase or of co-synthase in the presence of porphobilinogen. The tripyrranes chemically formed uroporphyrinogens by dimerization reactions, and the latter had to be deducted in control runs during the enzymatic studies. Two of the tripyrranes examined, the 2-aminomethyltripyrrane 7 and the 2-aminomethyltripyrrane 8, were found to be incorporated into enzymatically formed uroporphyrinogen III in the presence of porphobilinogen and of the deaminase-co-synthase system. While the former gave only a slight incorporation, the latter was incorporated in about 16%. No incorporation of 8 into uroporphyrinogen I was detected. On the basis of these results, and of the previous results obtained with 2-aminomethyldipyrrylmethanes, an outline of the most likely pathway of uroporphyrinogen III biosynthesis from porphobilinogen is given.  相似文献   

4.
5.
Highly stable labelled complexes are formed between porphobilinogen deaminase and stoicheiometric amounts of [14C]porphobilinogen. On completion of the catalytic cycle by the addition of excess of substrate, the complexes yield labelled product and display all the properties expected from covalently bound enzyme intermediates involved in the deaminase catalytic sequence.  相似文献   

6.
Biosynthesis and nature of elastin structures   总被引:7,自引:0,他引:7  
  相似文献   

7.
High-field NMR spectroscopic methods have been applied to study the reactions catalyzed by porphobilinogen (PBG) deaminase and uroporphyrinogen III (uro'gen III) cosynthase, which are the enzymes responsible for the formation of the porphyrin macrocycle. The action of these enzymes in the conversion of PBG, [2,11-13C]PBG, and [3,5-13C]PBG to uro'gens I and III has been followed by 1H and 13C NMR, and assignments are presented. The principal intermediate that accumulated was the correspondingly labeled (hydroxymethyl)bilane (HMB), the assignments for which are also presented.  相似文献   

8.
The heat-stable cofactor in cauliflower florets, which has been shown to be necessary for the enzymic production of ethylene from methional, consists of two components. The first is of a phenolic nature and appears to be an ester of p-coumaric acid. The second component is acidic in character, but has not as yet been identified.  相似文献   

9.
10.
11.
12.
13.
Human porphobilinogen synthase (PBGS) is a main target in lead poisoning. Human PBGS purifies with eight Zn(II) per homo-octamer; four ZnA have predominantly nonsulfur ligands, and four ZnB have predominantly sulfur ligands. Only four Zn(II) are required for activity. To better elucidate the roles of Zn(II) and Pb(II), we produced human PBGS mutants that are designed to lack either the ZnA or ZnB sites. These proteins, MinusZnA (H131A, C223A) and MinusZnB (C122A, C124A, C132A), each become purified with four Zn(II) per octamer, thus confirming an asymmetry in the human PBGS structure. MinusZnA is fully active, whereas MinusZnB is far less active, verifying an important catalytic role for ZnB and the removed cysteine residues. Kinetic properties of the mutants and wild type proteins are described. Comparison of Pb(II) inhibition of the mutants shows that ligands to both ZnA and ZnB interact with Pb(II). The ZnB ligands preferentially interact with Pb(II). At least one ZnA ligand is responsible for the slow tight binding behavior of Pb(II). The data support a novel model where a high affinity lead site is a hybrid of the ZnA and ZnB sites. We propose that the lone electron pair of Pb(II) precludes Pb(II) to function in PBGS catalysis.  相似文献   

14.
M J Warren  P M Jordan 《Biochemistry》1988,27(25):9020-9030
The formation of the dipyrromethane cofactor of Escherichia coli porphobilinogen deaminase was shown to depend on the presence of 5-aminolevulinic acid. A hemA- mutant formed inactive deaminase when grown in the absence of 5-aminolevulinic acid since this strain was unable to biosynthesize the dipyrromethane cofactor. The mutant formed normal levels of deaminase, however, when grown in the presence of 5-aminolevulinic acid. Porphobilinogen, the substrate, interacts with the free alpha-position of the dipyrromethane cofactor to give stable enzyme-intermediate complexes. Experiments with regiospecifically labeled intermediate complexes have shown that, in the absence of further substrate molecules, the complexes are interconvertible by the exchange of the terminal pyrrole ring of each complex. The formation of enzyme-intermediate complexes is accompanied by the exposure of a cysteine residue, suggesting that substantial conformational changes occur on binding substrate. Specific labeling of the dipyrromethane cofactor by growth of the E. coli in the presence of 5-amino[5-14C]levulinic acid has confirmed that the cofactor is not subject to catalytic turnover. Experiments with the alpha-substituted substrate analogue alpha-bromoporphobilinogen have provided further evidence that the cofactor is responsible for the covalent binding of the substrate at the catalytic site. On the basis of these cumulative findings, it has been possible to construct a mechanistic scheme for the deaminase reaction involving a single catalytic site which is able to catalyze the addition or removal of either NH3 or H2O. The role of the cofactor both as a primer and as a means for regulating the number of substrates bound in each catalytic cycle is discussed.  相似文献   

15.
16.
17.
Kinetic studies with ADP-glucose synthase show that 1,6-hexanediol bisphosphate (1,6-hexanediol-P2) is an effective activator that causes the enzyme to have a higher apparent affinity for ATP- and ADP-glucose than when fructose-1,6-P2 is the activator. Furthermore, in the presence of 1,6-hexanediol-P2, substrate saturation curves are hyperbolic shaped rather than sigmoidal shaped. CrATP behaves like a nonreactive analogue of ATP. Kinetic studies show that it is competitive with ATP. CrATP is not a competitive inhibitor of ADP-glucose. However, the combined addition of CrATP and glucose-1-P inhibits the enzyme competitively when ADP-glucose is the substrate. In binding experiments, CrATP, ATP, and fructose-P2 appear to bind to only half of the expected sites in the tetrameric enzyme, while ADP-glucose, the activators, pyridoxal-P and 1,6-hexanediol-P2, and the inhibitor, AMP, bind to four sites/tetrameric enzyme. Fructose-P2 inhibits 1,6-hexanediol-P2 binding, suggesting competition for the same sites. Glucose-1-P does not bind to the enzyme unless MgCl2 and CrATP are present and binds to four sites/tetrameric enzyme. Alternatively, CrATP in the presence of glucose-1-P binds to four sites/tetrameric enzyme. Thus, there are binding sites for the substrates, activators, and inhibitor located on each subunit and the binding sites can interact homotropically and heterotropically. ATP and fructose-P2 binding is synergistic showing heterotropic cooperativity. ATP and fructose-P2 must also be present together to effectively inhibit AMP binding. A mechanism is proposed which explains some of the kinetic and binding properties in terms of an asymmetry in the distribution of the conformational states of the four identical subunits.  相似文献   

18.
1. Porphobilinogen deaminase [porphobilinogen ammonia-lyase (polymerizing), EC 4.3.1.8] from Euglena gracilis was purified more than 200-fold. 2. The enzyme has a molecular weight of 41 000 +/- 2000, does not contain a chromophoric prosthetic group, and appears not to require metal ions for activity. 3. The stoicheiometry of the overall reaction at pH 7.4 was shown to be: 4 Porphobilinogen leads to uroporphyrinogen-I + 4 NH4+. This stoicheiometry for porphobilinogen and uroporphyrinogen was also observed over a wide range of pH values. 4. Initial-velocity studies showed a hyperbolic dependence of velocity on substrate concentration, demonstrating the existence of a displacement-type mechanism. 5. Vmax. varied with pH as a typical bell-shaped curve, indicating that two ionizable groups with pK values of 6.1 and 8.9 are important for catalysis. A plot of Vmax./Km against pH showed a single ionization (pK 8.2) to influence binding of substrate.  相似文献   

19.
Thermal denaturation of acid-soluble collagen from polar cod (Eleginus gracialis) skin has been studied by scanning microcalorimetry and intrinsic spectrofluorimetry methods. The thermal denaturation process occurs in three independent stages reflecting the melting of 33 kDa, 97 kDa, and 230 kDa domains. Thermodynamical parameters of the collagen denaturation have been determined.  相似文献   

20.
Feeding experiments with Ashbya gossypii followed by NMR analysis of the resulting riboflavin showed incorporation of deuterium from D-[2-2H]ribose at C-2' and from D-[1-2H]ribose in the pro-R position at C-1' of the ribityl side chain. The results rule out an Amadori rearrangement mechanism for the reduction of the ribosylamino to the ribitylamino linkage and point to formation of a Schiff base that is reduced stereospecifically opposite to the face from which the oxygen has departed. As prerequisite for the analysis, the 1H NMR signals for the pro-R and pro-S hydrogens at C-1' of 6,7-dimethyl-8-ribityllumazine and riboflavin and its tetraacetate were assigned with the aid of synthetic stereospecifically deuteriated samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号