首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Summary Both the mouse cytosolic malate dehydrogenase gene and its mitochondrial counterpart contain eight introns, of which two are present at identical positions between the isozyme genes. The probability that the two intron positions coincide by chance between the two genes has been shown to be significantly small (=1.3×10–3), suggesting that the conservation of the intron positions has a biological significance. On the basis of a rooted phylogenetic tree inferred from a comparison of these isozymes and lactate dehydrogenases, we have shown that the origins of the conserved introns are very old, possibly going back to a date before the divergence of eubacteria, archaebacteria, and eukaryotes. In the aspartate aminotransferase isozyme genes, five of the introns are at identical places. The origins of the five conserved introns, however, are not obvious at present. It remains possible that some or all of the conserved introns have evolved after the divergence of eubacteria and eukaryotes.  相似文献   

3.
Aspergillus nidulans beta-tubulin genes are unusually divergent   总被引:14,自引:0,他引:14  
G S May  M L Tsang  H Smith  S Fidel  N R Morris 《Gene》1987,55(2-3):231-243
  相似文献   

4.
We describe the complete sequence of the gene encoding mouse NF-M, the middle-molecular-mass neurofilament protein. The coding sequence is interrupted by two intervening sequences which align perfectly with the first two intervening sequences in the gene encoding NF-L (the low-molecular-mass neurofilament protein); there is no intron in the gene encoding NF-M corresponding to the third intron in NF-L. Therefore, both the number of introns and their arrangement in the genes coding NF-L and NF-M contrast sharply with the number and arrangement of introns in the genes of known sequence, encoding other members of the intermediate filament multigene family (desmin, vimentin, glial fibrillary acidic protein and the acidic and basic keratins); with the exception of a single truncated keratin gene that lacks an encoded tailpiece, these genes all contain eight introns, of which at least six are placed at homologous locations. Assuming the existence of a primordial intermediate filament gene containing most (if not all) the introns found in contemporary non-neurofilament intermediate filament genes, it seems likely that an RNA-mediated transposition event was involved in the generation of an ancestral gene encoding the NF polypeptides. A combination of insertional transposition and gene-duplication events could then explain the anomalous number and placement of introns within these genes. Consistent with this notion, we show that the genes encoding NF-M and NF-L are linked.  相似文献   

5.
6.
In virtually all of the 200 group I introns sequenced thus far, the specificity of 5' splice-site cleavage is determined by a basepair between a uracil base at the end of the 5' exon and a guanine in an intron guide sequence which pairs with the nucleotides flanking the splice-site. It has been reported that two introns in the cytochrome oxidase subunit I gene of Aspergillus nidulans and Podospora anserina are exceptions to this rule and have a C.G basepair in this position. We have confirmed the initial reports and shown for one of them that RNA editing does not convert the C to a U. Both introns autocatalytically cleave the 5' splice-site. Mutation of the C to U in one intron reduces the requirement for Mg2+ and leads to an increase in the rate of cleavage. As the C base encodes a highly conserved amino acid, we propose that it is selected post-translationally at the level of protein function, despite its inferior splicing activity.  相似文献   

7.
Blood coagulation can be initiated when factor VII(a) binds to its cofactor tissue factor. This factor VIIa/tissue factor complex proteolytically activates factors IX and X, which eventually leads to the formation of a fibrin clot. Plasma contains a lipoprotein-associated coagulation inhibitor (LACI) which inhibits factor Xa directly and, in a Xa-dependent manner, also inhibits the factor VIIa/tissue factor complex. Here we report the cloning of the human LACI gene and the elucidation of its intron-exon organization. The LACI gene, which spans about 70 kb, consists of nine exons separated by eight introns. As has been found for other Kunitz-type protease inhibitors, the domain structure of human LACI is reflected in the intron-exon organization of the gene. The 5' terminus of the LACI mRNA has been determined by primer extension and S1 nuclease mapping. The putative promoter was examined and found to contain two consensus sequences for AP-1 binding and one for NF-1 binding, but no TATA consensus promoter element.  相似文献   

8.
9.
The structural organization of the two closely related vitellogenin genes A1 and A2 has been determined and compared by electron microscopy. In both genes the mRNA-coding sequence of 6 kb is interrupted 33 times, leading to a total gene length of 21 kb for gene A1 and 16 kb for gene A2. Thus both genes have a mean exon length of 0.175 kb, while the mean intron length is 0.45 kb in gene A1 and 0.31 kb in gene A2. Because the introns interrupt the structural sequence at homologous positions in genes A1 and A2, we suggest that these two genes are the products of a duplication of an ancestral gene which had an intron-exon arrangement similar to that of the extant genes. Since the duplication event, the sequence and length of the analogous introns have changed rapidly, whereas homologous exons have diverged to an extent of only 5% of their sequences. The results suggest different mechanisms of evolution for exons and introns. While the exons evolved primarily by point mutations, such mutations, as well as deletion, insertion and duplication events, were important in the evolution of the introns.  相似文献   

10.
Correct identification of all introns is necessary to discern the protein-coding potential of a eukaryotic genome. The existence of most of the spliceosomal introns predicted in the genome of Saccharomyces cerevisiae remains unsupported by molecular evidence. We tested the intron predictions for 87 introns predicted to be present in non-ribosomal protein genes, more than a third of all known or suspected introns in the yeast genome. Evidence supporting 61 of these predictions was obtained, 20 predicted intron sequences were not spliced and six predictions identified an intron-containing region but failed to specify the correct splice sites, yielding a successful prediction rate of <80%. Alternative splicing has not been previously described for this organism, and we identified two genes (YKL186C/MTR2 and YML034W) which encode alternatively spliced mRNAs; YKL186C/MTR2 produces at least five different spliced mRNAs. One gene (YGR225W/SPO70) has an intron whose removal is activated during meiosis under control of the MER1 gene. We found eight new introns, suggesting that numerous introns still remain to be discovered. The results show that correct prediction of introns remains a significant barrier to understanding the structure, function and coding capacity of eukaryotic genomes, even in a supposedly simple system like yeast.  相似文献   

11.
cyt18-1 (299-9) is a nuclear mutant of Neurospora crassa that has been shown to have a temperature-sensitive defect in splicing the mitochondrial large rRNA intron. In the present work, we investigate the effect of the cyt18-1 mutation on splicing of mitochondrial mRNA introns. Two genes were studied in detail; the cytochrome b (cob) gene, which contains two introns, and a "long form" of the cytochrome oxidase subunit I (coI) gene, which contains four introns. We found that splicing of both cob introns and splicing of at least two of the coI introns are strongly inhibited in the mutant, whereas splicing of coI intron 1, which is excised as a 2.6 X 10(3) base circle, is relatively unaffected. The rRNA intron and both cob introns are group I introns, whereas the circular coI intron may belong to another structural class. Control experiments showed that the degree of inhibition of splicing is greater in the mutant than can be accounted for by severe inhibition of mitochondrial protein synthesis. Finally, experiments in which mutant cells were shifted from 25 degrees C to 37 degrees C showed that splicing of the large rRNA precursor and splicing of the coI mRNA precursor are inhibited with similar kinetics. Considered together, our results suggest that the cyt18 gene encodes a trans-acting component that is required for the splicing of group I mitochondrial DNA introns or some subclass thereof. Since Neurospora cob intron 1 has been shown to be self-splicing in vitro, defective splicing of this intron in cyt18-1 indicates that an essentially RNA-catalyzed splicing reaction must be facilitated by a trans-acting factor, presumably a protein, in vivo.  相似文献   

12.
D Jenne  K K Stanley 《Biochemistry》1987,26(21):6735-6742
The S-protein/vitronectin gene was isolated from a human genomic DNA library, and its sequence of about 5.3 kilobases including the adjacent 5' and 3' flanking regions was established. Alignment of the genomic DNA nucleotide sequence and the cDNA sequence indicated that the gene consisted of eight exons and seven introns. The intron positions in the S-protein gene and their phase type were compared to those in the hemopexin gene which shares amino acid sequence homologies with transin and the S-protein. Three introns have been found at equivalent positions; two other introns are very close to these positions and are interpreted as cases of intron sliding. Introns 3-7 occur at a conserved glycine residue within repeating peptide segments, whereas introns 1 and 2 are at the boundaries of the Somatomedin B domain of S-protein. The analysis of the exon structure in relation to repeating peptide motifs within the S-protein strongly suggests that it contains only seven repeats, one less than the hemopexin molecule. A very similar repeat pattern like that in hemopexin is shown to be present also in two other related proteins, transin and interstitial collagenase. An evolutionary model for the generation of the repeat pattern in the S-protein and the other members of this novel "pexin" gene family is proposed, and the sequence modifications for some of the repeats during divergent evolution are discussed in relation to known unique functional properties of hemopexin and S-protein.  相似文献   

13.
Here we report on the occurrence and position of introns found in three genes of rotifers. A region of the gene for the TATA-box binding protein was examined in three species of Bdelloidea and one of Monogononta. There are two introns in both copies of this gene present in each of the three bdelloids examined – one at a position where introns occur in other eukaryotes and the other at a novel position; the monogonont has no introns in the region examined. A region of the gene encoding the 82 kD heat shock protein was examined in 10 species, with every rotifer class represented. Introns were found in only two species, both bdelloids: one of the species has an intron in all three copies of the gene; the other has an intron in only one of the three copies. Both introns occur at novel positions. The gene for triosephosphate isomerase was examined in one bdelloid. Both copies of the gene in this species contain introns, all at conserved positions: one copy contains five introns, the other copy three. These observations demonstrate the presence of introns in bdelloid rotifers, some in conserved positions, others apparently newly arisen during bdelloid evolution.  相似文献   

14.
Organization of the gene for human factor XI   总被引:9,自引:0,他引:9  
R Asakai  E W Davie  D W Chung 《Biochemistry》1987,26(23):7221-7228
Factor XI (plasma thromboplastin antecedent) is a plasma glycoprotein that participates in the early phase of blood coagulation. The gene for the human protein has been isolated from two different lambda phage genomic libraries. Four independent recombinant lambda phage carrying overlapping DNA inserts that coded for the entire gene for factor XI were isolated and characterized by restriction mapping, Southern blotting, and selective DNA sequencing to establish the number and location of the intron-exon boundaries. The gene for human factor XI was 23 kilobases in length and consisted of 15 exons (I-XV) and 14 introns (A-N). Exon I coded for the 5' untranslated region, and exon II coded for the signal peptide. The next eight exons (III-X) coded for the four tandem repeats of 90 or 91 amino acids that were present in the amino-terminal region of the mature protein. Each of these tandem repeats was coded by two exons that were interrupted by a single intron, and these introns were located in essentially the same position within each of the four tandem repeats. The carboxyl-terminal region of the protein, which contained the catalytic chain, was coded by five exons (XI-XV) that were interrupted by four introns. The last four introns were located in the same positions as those in the genes for human tissue plasminogen activator and human urokinase.  相似文献   

15.
Yuasa HJ  Yamamoto H  Takagi T 《Gene》1999,229(1-2):163-169
Two distinct calmodulin (CaM) genes are isolated from the ascidian, Halocynthia roretzi, (Hr-CaM A and Hr-CaM B) and those structures are determined. There are three nucleotide substitutions, producing two amino acid differences between Hr-CaM A and Hr-CaM B, and those are corresponding to two of the known eight variable residues among metazoan CaMs. Both Hr-CaM A and Hr-CaM B are constructed from six exons and five introns, and the positions of introns are identical. The positions of introns of Hr-CaMs are also identical with those of vertebrate CaMs, except third introns. The third introns of Hr-CaMs are inserted at 28bp upstream when compared with vertebrate CaMs. Thus, sliding of the third intron might have occurred in only the ascidian lineage prior to the gene duplication that also occurred only in that lineage. In addition, with the comparison of the intron positions, we attempt to investigate the vicissitude of introns during the evolution of metazoan CaMs.  相似文献   

16.
Carbonic anhydrase-related protein XI (CA-RP XI) is a member of the α-carbonic anhydrase family (encoded by the gene CA-11), which has lost features of the active site required for enzymatic activity. Using PCR, we amplified CA-11 from genomic DNA of the bat Megaderma lyra. To elucidate the gene structure, we sequenced PCR products and compared their sequences with genomic and mRNA sequences known from human and domestic pig. We identified and sequenced eight introns in the bat CA-11. Five introns (introns 3–7) are located in identical or similar positions in other members of the vertebrate α-carbonic anhydrase gene family. Two 5′ introns and one 3′ intron are located in the regions of little or no sequence similarity with other members of the gene family. The low sequence similarity and additional introns suggest a separate evolutionary origin for the 5′ and 3′ portions of the CA-RP XI gene.  相似文献   

17.
18.
19.
以已公布的114种真菌线粒体基因组数据为依据,对cob内含子及其编码的Ⅱ型LAGLIDADG归巢内切酶进行全面分析,以揭示其进化规律。在cob内含子中共发现27个Ⅱ型LAGLIDADG归巢内切酶基因,其中18个位于S433内含子插入位点,其余9个散布在另外8个插入位点。结合Pfam数据,将Ⅱ型LAGLIDADG归巢内切酶分成10个主要类群,其中4个类群存在不同生物界物种间的水平迁移。S433位点的18个归巢内切酶均属于类群1,它们与宿主内含子可能从共同祖先垂直遗传而来,并在传递过程中伴有水平迁移;其他归巢内切酶及宿主内含子则应是水平迁移的结果。类群1中的归巢内切酶可分为两个亚类,两亚类识别的靶序列存在明显差异;保守模体氨基酸序列分析显示它们大多数具有潜在内切酶活性。全面呈现了真菌线粒体cob内含子及其编码的Ⅱ型LAGLIDADG归巢内切酶的存在状态和进化模式,为归巢内切酶的改造和设计提供了新素材。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号