首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The lux genes required for expression of luminescence have been cloned from a terrestrial bacterium, Xenorhabdus luminescens, and the nucleotide sequences of the luxA and luxB genes coding for the alpha and beta subunits of luciferase determined. The lux gene organization was closely related to that of marine bacteria from the Vibrio genus with the luxD gene being located immediately upstream and the luxE downstream of the luciferase genes, luxAB. A high degree of homology (85% identity) was found between the amino acid sequences of the alpha subunits of X. luminescens luciferase and the luciferase from a marine bacterium, Vibrio harveyi, whereas the beta subunits of the two luciferases had only 60% identity in amino acid sequence. The similarity in the sequences of the alpha subunits of the two luciferases was also reflected in the substrate specificities and turnover rates with different fatty aldehydes supporting the proposal that the alpha subunit almost exclusively controls these properties. The luciferase from X. luminescens was shown to have a remarkably high thermal stability being stable at 45 degrees C (t 1/2 greater than 3 h) whereas V. harveyi luciferase was rapidly inactivated at this temperature (t 1/2 = 5 min). These results indicate that the X. luminescens lux system may be the bacterial bioluminescent system of choice for application in coupled luminescent assays and expression of lux genes in eukaryotic systems at higher temperatures.  相似文献   

3.
The lux genes required for light expression in the luminescent bacterium Photobacterium leiognathi (ATCC 25521) have been cloned and expressed in Escherichia coli and their organization and nucleotide sequence determined. Transformation of a recombinant 9.5-kbp chromosomal DNA fragment of P. leiognathi into an E. coli mutant (43R) gave luminescent colonies that were as bright as those of the parental strain. Moreover, expression of the lux genes in the mutant E. coli was strong enough so that not only were high levels of luciferase detected in crude extracts, but the fatty-acid reductase activity responsible for synthesis of the aldehyde substrate for the luminescent reaction could readily be measured. Determination of the 7.3-kbp nucleotide sequence of P. leiognathi DNA, including the genes for luciferase (luxAB) and fatty-acid reductase (luxCDE) as well as a new lux gene (luxG) found recently in luminescent Vibrio species, showed that the order of the lux genes was luxCDABEG. Moreover, luxF, a gene homologous to luxB and located between luxB and luxE in Photobacterium but not Vibrio strains, was absent. In spite of this different lux gene organization, an intergenic stem-loop structure between luxB and luxE was discovered to be highly conserved in other Photobacterium species after luxF.  相似文献   

4.
5.
A commercially available biocontrol agent, Bacillus subtilis MBI600, was transformed with plasmids containing a luciferase lux AB fusion cassette under the control of a constitutive promoter, as well as two promoter-less plasmids, containing either a lux AB fusion cassette or lux A and lux B genes. Introduction of these genes did not alter the growth rate, but subsequent expression of the luciferase enzyme resulted in a consistently compromised in vitro biocontrol activity. The expressed luciferase gene product (rather then the insertion of the novel genes) appeared to have undesired side effects on the phenotype of the transformed organism, demonstrating why caution should be exercised when using marker/reporter gene systems for investigating biocontrol.  相似文献   

6.
L Xi  K W Cho    S C Tu 《Journal of bacteriology》1991,173(4):1399-1405
Xenorhabdus luminescens HW is the only known luminous bacterium isolated from a human (wound) source. A recombinant plasmid was constructed that contained the X. luminescens HW luxA and luxB genes, encoding the luciferase alpha and beta subunits, respectively, as well as luxC, luxD, and a portion of luxE. The nucleotide sequences of these lux genes, organized in the order luxCDABE, were determined, and overexpression of the cloned luciferase genes was achieved in Escherichia coli host cells. The cloned luciferase was indistinguishable from the wild-type enzyme in its in vitro bioluminescence kinetic properties. Contrary to an earlier report, our findings indicate that neither the specific activity nor the size of the alpha (362 amino acid residues, Mr 41,389) and beta (324 amino acid residues, Mr 37,112) subunits of the X. luminescens HW luciferase was unusual among known luminous bacterial systems. Significant sequence homologies of the alpha and beta subunits of the X. luminescens HW luciferase with those of other luminous bacteria were observed. However, the X. luminescens HW luciferase was unusual in the high stability of the 4a-hydroperoxyflavin intermediate and its sensitivity to aldehyde substrate inhibition.  相似文献   

7.
DNA coding for the alpha and beta subunits of Vibrio harveyi luciferase, the luxA and luxB genes, and the adjoining chromosomal regions on both sides of these genes (total of 18 kilobase pairs) was cloned into Escherichia coli. Using labeled DNA coding for the alpha subunit as a hybridization probe, we identified a set of polycistronic mRNAs (2.6, 4, 7, and 8 kilobases) by Northern blotting; the most prominent of these was the one 4 kilobases long. This set of mRNAs was induced during the development of bioluminescence in V. harveyi. Furthermore, the same set of mRNAs was synthesized in E. coli by a recombinant plasmid that contained a 12-kilobase pair length of V. harveyi DNA and expressed the genes for the luciferase subunits. A cloned DNA segment corresponding to the major 4-kilobase mRNA coded for the alpha and beta subunits of luciferase, as well as a 32,000-dalton protein upstream from these genes that could be specifically modified by acyl-coenzyme A and is a component of the bioluminescence system. V. harveyi mRNA that was hybridized to and released from cloned DNA encompassing the luxA and luxB genes was translated in vitro. Luciferase alpha and beta subunits and the 32,000-dalton polypeptide were detected among the products, along with 42,000- and 55,000-dalton polypeptides, which are encoded downstream from the lux genes and are thought to be involved in luminescence.  相似文献   

8.
The organization of the lux structural genes (A-E) in Photobacterium phosphoreum has been determined and a new gene designated as luxF discovered. The P. phosphoreum luminescence system was cloned into Escherichia coli using a pBR322 vector and identified by cross-hybridization with Vibrio fischeri lux DNA. The lux genes were located by specific expression of P. phosphoreum DNA fragments in the T7-phage polymerase/promoter system in E. coli and identification of the labeled polypeptide products. The luxA and luxB gene products (luciferase subunits) were shown to catalyze light emission in the presence of FMNH2, O2, and aldehyde. The luxC, luxD, and luxE gene products (fatty acid reductase subunits) responsible for aldehyde biosynthesis could be specifically acylated with 3H-labeled fatty acids. The order of the lux genes in P. phosphoreum was found to be luxCDABFE with luxF coding for a new polypeptide of 26 kDa. The presence of a new gene in the P. phosphoreum luminescence system between luxB and luxE as compared to the organization of the lux structural gene in V. fischeri and Vibrio harveyi (luxCDABE) demonstrates that the luminescent systems in the marine bacteria have significantly diverged. The discovery of the luxF gene provides the basis for elucidating the role of its gene product in the expression of luminescence in different marine bacteria.  相似文献   

9.
Molecular biology of bacterial bioluminescence.   总被引:63,自引:2,他引:63       下载免费PDF全文
The cloning and expression of the lux genes from different luminescent bacteria including marine and terrestrial species have led to significant advances in our knowledge of the molecular biology of bacterial bioluminescence. All lux operons have a common gene organization of luxCDAB(F)E, with luxAB coding for luciferase and luxCDE coding for the fatty acid reductase complex responsible for synthesizing fatty aldehydes for the luminescence reaction, whereas significant differences exist in their sequences and properties as well as in the presence of other lux genes (I, R, F, G, and H). Recognition of the regulatory genes as well as diffusible metabolites that control the growth-dependent induction of luminescence (autoinducers) in some species has advanced our understanding of this unique regulatory mechanism in which the autoinducers appear to serve as sensors of the chemical or nutritional environment. The lux genes have now been transferred into a variety of different organisms to generate new luminescent species. Naturally dark bacteria containing the luxCDABE and luxAB genes, respectively, are luminescent or emit light on addition of aldehyde. Fusion of the luxAB genes has also allowed the expression of luciferase under a single promoter in eukaryotic systems. The ability to express the lux genes in a variety of prokaryotic and eukaryotic organisms and the ease and sensitivity of the luminescence assay demonstrate the considerable potential of the widespread application of the lux genes as reporters of gene expression and metabolic function.  相似文献   

10.
A chromosomal fragment of bacteria Photorhabdus luminescence Zm1, which contains the lux operon, was cloned into the vector pUC18. The hybrid clone containing plasmid pXen7 with the EcoRI fragment approximately 7-kb was shown to manifest a high level of bioluminescence. By subcloning and restriction analysis of the EcoRI fragment, the location of luxCDABE genes relative to restriction sites was determined. The nucleotide sequence of the DNA fragment containing the luxA and luxB genes encoding alpha- and beta-subunits of luciferase was determined. A comparison with the nucleotide sequences of luxAB genes in Hm and Hw strains of Ph. luminescence revealed 94.5 and 89.7% homology, respectively. The enterobacterial repetitive intergenic sequence (ERIC) of 126 bp typical for Hw strains was identified in the spacer between the luxD and luxA genes. The lux operon of Zm1 is assumed to emerge through recombination between Hm and Hw strains. Luciferase of Ph. luminescence was shown to possess a high thermal stability: its activity decreased by a factor of 10 at 44 degrees C for 30 min, whereas luciferases of marine bacteria Vibrio fischeri and Vibrio harveyi were inactivated by one order of magnitude at 44 degrees C for 1 and 6 min, respectively. The lux genes of Ph. luminescence are suggested for use in gene engineering and biotechnology.  相似文献   

11.
E F Delong  D Steinhauer  A Israel  K H Nealson 《Gene》1987,54(2-3):203-210
Genes necessary for luminescence (lux genes) in the marine bacterium Photobacterium leiognathi, strain PL721, were isolated and expressed in Escherichia coli. A 15-kb fragment obtained from a partial digestion of PL721 DNA with HindIII was cloned into the plasmid pACYC184, resulting in the hybrid plasmid pSD721. When pSD721 was transformed into E. coli ED8654, the resulting transformants were luminous with no additions to the cells, indicating that it contained the structural genes coding for the alpha and beta subunits of luciferase (luxA and luxB), and for components involved in aldehyde biosynthesis. Hybridization analysis with luxA and luxB 32P probes confirmed the location of these two genes on the 15-kb insert. When pSD721 was transformed into four different strains of E. coli, luminescence expression varied widely in amount and in pattern. In some strains, luminescence developed like an autoinducible system, and at maximum induction was very bright, even with no addition of aldehyde, while in others, luminescence was 100-fold less, and no induction was seen. In no case was luminescence affected by shifts in temperature, osmolarity, or iron concentration. These results indicate that, while the complete lux regulon is apparently contained on the 15-kb cloned fragment, the regulation of the lux regulon in pSD721 is subject to host controls by E. coli, controls which vary widely among different E. coli strains.  相似文献   

12.
The lux genes of Xenorhabdus luminescens, a symbiont of the nematode Heterorhabditis bacteriophora, were cloned and expressed in Escherichia coli. The expression of these genes in E. coli was qualitatively similar to their expression in X. luminescens. The organization of the genes is similar to that found in the marine luminous bacteria. Hybridization studies with the DNA that codes for the two subunits of luciferase revealed considerable homology among all of the strains of X. luminescens and with the DNA of other species of luminous bacteria, but none with the nonluminous Xenorhabdus species. Gross DNA alterations such as insertions, deletions, or inversions do not appear to be involved in the generation of dim variants known as secondary forms.  相似文献   

13.
Evolutionary origins of bacterial bioluminescence   总被引:5,自引:0,他引:5  
In bacteria, most genes required for the bioluminescence phenotype are contained in lux operons. Sequence alignments of several lux gene products show the existence of at least two groups of paralogous products. The alpha- and beta-subunits of bacterial luciferase and the non-fluorescent flavoprotein are paralogous, and two antennae proteins (lumazine protein and yellow fluorescence protein) are paralogous with riboflavin synthetase. Models describing the evolution of these paralogous proteins are suggested, as well as a postulate for the identity of the gene encoding a protobioluminescent luciferase.  相似文献   

14.
A study was made of the effect of RcsA and RcsB on the Vibrio fischeri lux expression in Escherichia coli. RcsA suppressed the LuxR activity and thereby inhibited expression of the lux genes coding for luciferase and reductase. In osmotic shock, RcsA-RcsB activated lux expression and, consequently, bioluminescence of E. coli cells in the early log phase.  相似文献   

15.
16.
17.
It has previously been suggested that the evolutionary drive of bacterial bioluminescence is a mechanism of DNA repair. By assessing the UV sensitivity of Escherichia coli, it is shown that the survival of UV-irradiated E. coli constitutively expressing luxABCDE in the dark is significantly better than either a strain with no lux gene expression or the same strain expressing only luciferase (luxAB) genes. This shows that UV resistance is dependent on light output, and not merely on luciferase production. Also, bacterial survival was found to be dependent on the conditions following UV irradiation, as bioluminescence-mediated repair was not as efficient as repair in visible light. Moreover, photon emission revealed a dose-dependent increase in light output per cell after UV exposure, suggesting that increased lux gene expression correlates with UV-induced DNA damage. This phenomenon has been previously documented in organisms where the lux genes are under their natural luxR regulation but has not previously been demonstrated under the regulation of a constitutive promoter.  相似文献   

18.
Advances in genetic engineering methods have allowed the development of an increasing number of practical and scientific applications for bioluminescence with lux genes cloned from a variety of organisms. Bioluminescence derived from the shortened lux operon (luxAB genes) is a complex process, and applications seem to be proliferating in advance of an understanding of the underlying biochemical processes. In this report, we describe a two-phase kinetic behavior of the light emission which must be properly taken into account in any quantitative measurements of the bioluminescence signal. By using strains of Escherichia coli and Caulobacter crescentus, this behavior was characterized and interpreted in terms of the biochemistry underlying the bacterial luciferase mechanism. We show that the intensity profile of each of the two phases of the luminescence signal is responsive (and exhibits different sensitivities) to the concentration of added decanal and other components of the assay mix, as well as to the order of mixing and incubation times. This study illustrates the importance of appropriate protocol design, and specific recommendations for using the luxAB system as a molecular reporter are presented, along with versatile assay protocols that yield meaningful and reproducible signals.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号