首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Amounts of the enzyme ribulose-1,5-bisphosphate carboxylasewere estimated in seedling leaves of barley (Hordewn vulgareL.) and flag leaves of wheat (Triticum aestitum L.) by radialimmuno diffusion. A fourfold variation among barley varietiesfor amount of RuBPCase at the seedling stage was observed (c.3.5–15mg g–1 fr. wt). Range in variation for amountof flag leaf RuBPCase among wheat varieties was 6-09-9.39 mgRuBPCase g–1 fr. wt. F1 hybrids from interspecific andintergeneric crosses of crested wheatgrasses (Agropyron andElymus spp.) and their amphidiploid analogues were comparedfor amount of RuBPCase in the most recent fully expanded leavesharvested before seed set. Amount of enzyme varied from 3.4to 77.6 mg g–1 fr. wt among the hybrids. No effect chromosomenumber on enzyme concentration was observed among 13 hybridsand their amphidiploid counterparts. Key words: RuBPCase, wheatgrasses  相似文献   

2.
The main shoot of field-grown Jyoti barley (Hordeum vulgareL.) grown at 40 kg ha–1 was separated into different organsat various stages of growth and development. Changes in freshand dry weights and duration for which the parts remained metabolicallyactive (green) were recorded. Weight duration (gram x day),a factor contributing to total NO3 reduction of eachorgan, was calculated. The dry matter percentage increased inthe successively formed laminae and sheaths. The weight durationof the different components viz. internodes, spike (excludingthe grains), laminae, and sheaths, respectively were 40.2, 10.5,21.8, and 17.8. Nitrate content (µmol g–1 dry wt.)was high in the initially formed organs and declined in thesuccessively formed ones. In the laminae, there was a sharpfall after achieving maximal values except for the flag laminawhere the changes in NO3 content were marginal over afairly long period. The ear components had low NO3 concentration.Total NO3 content (µmol) in the main shoot showedpeaks at 49, 84, and 118 d after sowing.  相似文献   

3.
Starting in 1996, individual trees of Scots pine (Pinus sylvestrisL.) aged 30 years, were grown in closed-top chambers and exposedto either normal ambient conditions (CON), elevated CO2(approx.700 µmol mol-1; Elev. C), elevated temperature (approx.2 °C and approx. 6 °C above the outside ambient temperatureduring the ‘growing season’ and ‘off season’,respectively; Elev. T) or a combination of elevated CO2and warmertemperature (Elev. CT). Sap flow was monitored simultaneouslyby the constant-power heat balance method in a total of 16 trees,four for each treatment, over a 32 d period in summer 1998 (afterthe completion of needle expansion and branch elongation). Toquantify the contributions of crown and physical environmentalvariables to total crown transpiration, a ‘sun/shade model’was developed and used to partition the changes in transpirationto different sources. The results of the sap flow measurementsindicate that (1) total daily sap flow (Etree.d) varied from0.15–3.41 kg per tree; (2) the treatment effect on Etree.ddependedgreatly on the weather conditions; (3) the cumulative Etree.dforthe 32 d dropped significantly by 22% relative to CON (P =0.038)under Elev. C and increased significantly by 21% (P =0.043)and 16% (P =0.048) under Elev. T and Elev. CT, respectively.In general, the modelled transpiration gave good agreement withthe sap flow results. The model computations showed that, ona typical sunny day in summer, the effect of treatment on crownstomatal conductance was responsible for approx. 80% of thechange inEtree.d , while the increase in needle area and theeffect on total radiation absorption contributed only a smallpercentage. Furthermore, sunlit needles were responsible forover 60% of change in transpiration. The effect of the treatmentson Etree.dwas larger at high temperature and vapour pressuredeficit but was not sensitive to incident daily radiation. Copyright2000 Annals of Botany Company Transpiration model, sap flow, CO2and temperature elevation, environment-controlled chamber, Pinus sylvestris L.  相似文献   

4.
Germination and Storage of Pollen of Phytolacca dodecandra L. (endod)   总被引:1,自引:0,他引:1  
The effect of sucrose, H2BO3, KNO3, Ca(NO2)2.4H2O and MgSO4.7H2O on pollen germination of Phytolacca dodecandra L. (endod)in a liquid medium was investigated. Sucrose and H3BO3 werecritical to pollen germination. A concentration of 10% sucroseand 161.8 µm H2BO3 gave over 70% germination. The germinationof pollen was not enhanced by Ca(NO3)2.4H2O, KNO3 and MgSO4.7H2O.Endod pollen was dehydrated over CaCl2 and stored in gelatincapsules in cryogenic vials at –175 °C, 1±1°C and 24±2 °C. The pollen moisture content atcollection was approx. 7.8% (f. wt basis) and dehydration overCaCl2 reduced it to about 1.4%. Pollen stored at 1±1°C and –175 °C maintained viability for over 6months. Pollen stored at room temperature lost viability within4 weeks of storage. Pollination with cryopreserved pollen resultedin normal fruit set. Phytolacca dodecandra, endod, pollen germination, pollen storage  相似文献   

5.
The effects of a range of applied nitrate (NO3) concentrations(0–20 mol m3) on germination and emergence percentageof Triticum aestivum L. cv. Otane were examined at 30, 60, 90and 120 mm sowing depths. Germination percentage was not affectedby either sowing depth or applied NO3 concentration whereasemergence percentage decreased with increased sowing depth regardlessof applied NO3 concentration. Nitrate did not affectemergence percentage at 30 mm sowing depth, but at 60 to 120mm depth, emergence percentage decreased sharply with an increasedapplied NO3 concentration of 0 to 1·0 mol m–3then decreased only slightly with further increases in appliedNO3 of about 5·0 mol m–3. Root and shoot growth, NO3 accumulation and nitrate reductaseactivity (NRA) of plants supplied with 0, 1·0 and 1·0mol m–3 NO3 at a sowing depth of 60 mm were measuredprior to emergence. The coleoptile of all seedlings opened withinthe substrate. Prior to emergence from the substrate, shootextension growth was unaffected by additional NO3 butshoot fr. wt. and dry wt. were both greater at 1·0 and1·0 mol m–3 NO3 than with zero NO3.Root dry wt. was unaffected by NO3. Nitrate concentrationand NRA in root and shoot were always low without NO3.At 1·0 and 10 mol m3 NO3, NO3 accumulatedin the root and shoot to concentrations substantially greaterthan that applied and caused the induction of NRA. Regardlessof the applied NO3 concentration, seedlings which failedto emerge still had substantial seed reserves one month afterplanting. Coleoptile length was substantially less for seedlingswhich did not emerge than for seedlings which emerged, but wasnot affected by NO3. It is proposed that (a) decreasedemergence percentage with increased sowing depth was due tothe emergence of leaf I from the coleoptile within the substrateand (b) decreased emergence percentage with additional NO3was due to the increased expansion of leaf 1 within the substrateresulting in greater folding and damage of the leaf. Key words: Triticum aestivwn L., nitrate, sowing depth, seedling growth, seedling emergence  相似文献   

6.
The effect of ultraviolet A (UVA) on growth and photosyntheticrate was studied in diatoms (Melosira spp.) of the phytoplanktonof a eutrophic lake and a cultured green alga Chloretla ellipsoidea.The cells were incubated under photosynthetically active radiation(PAR) (–UVA) or PAR + UVA conditions (+UVA). Growth ofC.ellipsoidea was retarded under +UVA, as shown by an increasein the lag period, but the rate of exponential growth was almostthe same in + and –UVA conditions. The photosyntheticrate was depressed markedly by UVA in Chlorella cells grownunder –UVA. In contrast, cells grown in +UVA showed onlyslight inhibition by UVA and after exposure to UVA for 6 daysthere was no inhibition. During the growth experiment, the cellularchlorophyll a content was higher in +UVA than +UVA grown cells.A similar effect was observed in diatoms from the eutrophicLake Suwa. In vivo fluorescence with (Fa) and without 3-(3,4-dichloropheny)-l,l-dimethylurea (DCMU) (Fb) and the photosynthetic rate were measured forC.ellipsoidea and the diatoms for 5 h under + and –UVAconditions. Soon after C.ellipsoidea had been subjected to +UVA,Fb and Fa / Fb decreased quickly and reached minima after 40min and 1 h, respectively. The suppressed in vivo fluorescenceresumed and full recovery was achieved after 4 h. This suggeststhat reactivation of the photosystem is acquired under prolongedexposure to UVA. A similar shift of Fa + Fb, but no change inFb, was found in diatoms by exposure to UVA. Changes in photosyntheticoxygen evolution by C.ellipsoidea under +UVA were similar tochanges in Fa + Fb. Degradation of chlorophyll a extracted inmethanol was enhanced by UVA. The rate of degradation by UVAwas independent of temperature from 15 to 34°C, suggestinga photochemical reaction. The results indicate that C.ellipsoideaand Melosira spp. acclimatize to prolonged UVA exposure by reactivationof the photosystem and enhanced cellular chlorophyll a synthesis.The ecological importance of these results to phytoplanktonproductivity in natural aquatic environments is discussed.  相似文献   

7.
The influence of different light qualities on chlorophyll contentand growth of tissue cultures from Crepis capillaris (L.) WALLR. Tissue cultures from Crepis capillaris growing on media (M1; M2 ; M2-E) formed chlorophyll and intact chloroplasts onlyin the short wave length region of the visible spectrum (350–550nm). In red light (600–700 nm) as well as in darknessthey lost their chlorophyll after 8–10 weeks. The growth of Crepis-cultures was strongly influenced by lightand the nitrogen of the medium. The highest increase in freshweight (425–485% increase in 3 weeks) was attained inred light or in darkness on M2 by cultures which had lost theirchlorophyll completely. M2 contains nitrates, ammonium saltsand amino acids. In contrast, the increase in fresh weight ofgreen cultures growing on M2 in blue or white light was considerablylower (155–180% increase in 3 weeks). Omission of amino acids, (M2-E), resulted in the reduction ofthe growth (increase of fresh weight in 3 weeks: 120%) of thechlorophyll-free cells growing in the dark. Green cultures behaveddifferently on M2-E. In white light they attained an increasein fresh weight of 245%. This suggests that the growth promotingeffect of the amino acids can be replaced by light. Results with cultures growing on M1, which contains neitherammonium salts nor amino acids, point in the same direction.Green cultures in white or blue light grew better (90–100%increase in fresh weight in 3 weeks) on this "deficient" mediumthan chlorophyll-free tissues in red light or in darkness (20–30%increase in fresh weight in 3 weeks). Some aspects of thesefindings which concern the effect of light on growth are discussed. (Received November 28, 1969; )  相似文献   

8.
HOLE  C. C.; BARNES  A. 《Annals of botany》1980,45(3):295-307
Carbon dioxide efflux from 5- to 20-day-old pea fruits was measuredfor plants grown in controlled environment at 15 °C and600 µmol s–1 m–2 photon flux density in a16 h photoperiod. The rate of CO2 output per fruit increasedquickly from 0.005 to 0.018 mg CO2 min–1 during fruitelongation and subsequently more slowly to 0.030 mg CO2 min–1as the fruits inflated. On a d. wt basis the rate was highest,0.175 mg CO2 g–1 min–1, in the youngest fruits anddeclined curvilinearly with increasing fruit weight to 0.02mg CO2 g–1 min–1. Separation of maintenance andgrowth components was achieved by starvation methods and bymultiple regression analysis. From the latter method estimatesof the maintenance coefficient declined hyperbolically from150±8.7 mg carbohydrate g–1 d. wt day–1 inthe very young fruits (0.05 g) to 10.4±0.36 mg carbohydrateg–1 d. wt day–1 in older fruits (2.0 g). On a nitrogenbasis maintenance costs decreased from 2240 to 310 mg carbohydrateg–1 nitrogen day–1 while nitrogen concentrationfell from 6.7 to 3 per cent d. wt. A simple linear relationshipbetween maintenance cost per unit d. wt and nitrogen concentrationwas not observed. A growth coefficient of 50±6.7 mg carbohydrate g–1growth (equivalent to a conversion efficiency, YG, of 0.95)was estimated for all fruits examined. The overall efficiency, Y, increased from a mean of 0.70 to0.85 during fruit elongation and subsequently declined to 0.80.For a given fruit weight, efficiency increased asymptoticallywith relative growth rate; both asymptote and slope of the relationshipincreased as the fruits grew. Pisum sativum L., garden pea, legume fruit, carbon dioxide efflux, maintenance respiration, growth respiration  相似文献   

9.
Background and Aims Neotyphodium lolii is a fungal endophyteof perennial ryegrass (Lolium perenne), improving grass fitnessthrough production of bioactive alkaloids. Neotyphodium speciescan also affect growth and physiology of their host grasses(family Poaceae, sub-family Pooideae), but little is known aboutthe mechanisms. This study examined the effect of N. lolii onnet photosynthesis (Pn) and growth rates in ryegrass genotypesdiffering in endophyte concentration in all leaf tissues. • Methods Plants from two ryegrass genotypes, Nui D andNui UIV, infected with N. lolii (E+) differing approx. 2-foldin endophyte concentration or uninfected clones thereof (E–)were grown in a controlled environment. For each genotype xendophyte treatment, plant growth rates were assessed as tilleringand leaf extension rates, and the light response of Pn, darkrespiration and transpiration measured in leaves of young (30–45d old) and old (>90 d old) plants with a single-chamber openinfrared gas-exchange system. • Key Results Neotyphodium lolii affected CO2-limited ratesof Pn, which were approx. 17 % lower in E+ than E– plants(P < 0·05) in the young plants. Apparent photon yieldand dark respiration were unaffected by the endophyte (P >0·05). Neotyphodium lolii also decreased transpiration(P < 0·05), but only in complete darkness. There wereno endophyte effects on Pn in the old plants (P > 0·05).E+ plants grew faster immediately after replanting (P < 0·05),but had approx. 10 % lower growth rates during mid-log growth(P < 0·05) than E– plants, but there was noeffect on final plant biomass (P > 0·05). The endophyteeffects on Pn and growth tended to be more pronounced in NuiUIV, despite having a lower endophyte concentration than NuiD. • Conclusions Neotyphodium lolii affects CO2 fixation,but not light interception and photochemistry of Pn. The impactof N. lolii on plant growth and photosynthesis is independentof endophyte concentration in the plant, suggesting that theendophyte mycelium is not simply an energy drain to the plant.However, the endophyte effects on Pn and plant growth are stronglydependent on the plant growth phase.  相似文献   

10.
Relative limitations of nitrogen (N) status on the processescontributing to photosynthetic rate (A) were investigated. Jackpine {Pinus banksiana Lamb.) seedlings from seeds grown in sandculture were supplied with four different N treatments for 6weeks, which resulted in a needle N content ranging from 50–85mmol m–2 (14–32 mg g–1 dry weight). Leaf gasexchange at varying CO2 levels was measured and limitationson A350 (A at ambient CO2 level) caused by finite, limitingcarboxylation efficiency (c.e.), maximum A (Amax)and stomatalconductance were estimated from an analysis of the responseof A to internal CO2 concentration. Although c.e. and Amax decreasedlinearly with the decline in needle N, the magnitudes of theirchanges relative to A350 differed. Amax varied with A350 andalways exceeded A350 by 37–38% c.e., however, declinedfaster than A350, as needle N level decreased. Consequently,relative limitation on A350 caused by inefficient Amax remainedconstant, but limitations caused by c.e. increased by 10–15%at low N levels. In contrast, the limitation by stomatal conductancedeclined initially, but remained stable when N content droppedbelow 75 mmol m–2. The results suggest: (1) a decreasein biochemical capacity, but not stomatal conductance, contributedto the reduction of A350 induced by N-deficiency in jack pineseedlings; and (2) the capacity of carboxylation appeared tobe impaired more than that of electron transport and/or photophosphorylationand its reduction may be the major reason for the reductionin A350. Key words: A–Ci analysis, carboxylation efficiency, electron transport, nitrogen deficiency, stomatal conductance  相似文献   

11.
Hansen, A. P., Pate, J. S., Hansen, A. and Bell, D. T. 1987.Nitrogen economy of post-fire stands of shrub legumes in jarrah(Eucalyptus marginata Donn ex Sm.) forest of S.W. Australia.—J.exp. Bot. 38: 26–41. Growth, demography and N economy of 1–6-year-old standsof Acacia pulchella, A. alata, A. extensa and Bossiaea aquifoliumwere examined using population sampling to assess annual incrementsof N as living biomass, and returns of N as litter, seed anddead plants. Dependence on nitrogen fixation was assessed fromseasonal profiles of acetylene reduction, employing data fromprevious calibrations to convert C2H2 reduced to N2 fixed. After2 years of slow growth and minimal reproduction all speciesgrew rapidly to achieve maximum or near maximum size and seedproduction. Intense self-thinning of stands occurred in thesecond and third years, especially in the highly dense standsof the smallest species, A. alata. Annual turnover in standsranged from 0?3 to 127 kg N ha–1 year–1, dependingon species current age and density of a stand. Returns of Nas litter and shed seed comprised small proportions of the annualbudgets, but returns due to plant death equalled or exceededincrements of living biomass in years when stands were thinningrapidly. Proportional dependencies of the species on fixed N2were relatively high (13–61%) in first year seedlings,and then declined markedly to 1?1–3?4percnt; in the second,0?3–1?6% in the third, and, with one exception, to wellbelow 1% in the fourth and sixth year stands. Mean annual ratesof N2 fixation over the 6-year post-fire period were 1?6 kgN ha–1 year–1 for A. alata, 0–49 for A. pulchella,0?19 for B. aquifolium and 0-10 for A. extensa Key words: Shrub legumes, post-fire N economy  相似文献   

12.
Translocation of products of photosynthesis from gametophyteto sporophyte was examined in the moss Funaria hygrometricaHedw., as an adjunct to companion studies on the ultrastructureof the sporophyte haustorium and its capacity for absorptionof sugars in vitro. Labelled products derived from gametophyticphotosynthesis are transported to the sporophyte at an approximatelylinear rate for up to 12 h after a pulse treatment with 14CO2.Large sporophytes receive label at a greater rate than smallerones. Transport is inhibited under conditions of water stress,and by lack of light, though darkening the sporophyte alonehas no effect. Movement of label from the haustorium along theseta occurs at a velocity of 1–3 mm h–1, and issimilar to the onward movement of label derived from [3H]glucosesupplied to the haustorium in vitro.  相似文献   

13.
Phosphorus and nitrogen uptake capacities were assessed during36–58 d drying cycles to determine whether the abilityof sagebrush (Artemisia tridentata Nutt.) to absorb these nutrientschanged as the roots were subjected to increasing levels ofwater stress. Water was withheld from mature plants in large(6 I) containers and the uptake capacity of excised roots insolution was determined as soil water potentials decreased from–0.03 MPa to –5.0 MPa. Phosphorus uptake rates of excised roots at given substrateconcentrations increased as preharvest soil water potentialsdecreased to –5.0 MPa. Vmax and Km also increased as soilwater potentials declined. Declining soil water potentials depressednitrogen uptake at set substrate concentrations, but uptakecapacity, calculated as the sum Vmax for both NH+4+NO3,did not change significantly with drying. The sum Vmax correlatedwith root nitrogen concentration. Root uptake capacity for nitrogen and phosphorus was extremelystable under severe water stress in this aridland shrub. Maintenanceof uptake capacity, coupled with a previously demonstrated abilityto conduct hydraulic lift, may enable A. tridentata better tomaintain nitrogen and phosphorus uptake as soil water availabilitydeclines. These mechanisms may be important in the ability ofA. tridentata to maintain growth, complete reproduction, andgain an advantage against competitors late in the season whenthe soil layers with higher nutrient availability are dry. Key words: Kinetics, nitrogen, phosphorus, roots, water stress  相似文献   

14.
Exposure of ryegrass (Lolium perenne L.) cv. S23 to 0, 50, and400 µg m–3 SO2 for an initial 29 d (first harvest),and for an additional 22 d period of regrowth (second harvest),resulted in distinct alterations in carbohydrate metabolismat each harvest. At the first harvest, exposure to 50 µgm–3 increased concentrations of free and total carbohydrates,whereas exposure to 400 µg m–3 resulted in concentrationshardly different from those in control plants. At both SO2 concentrations,more assimilate was retained as free carbohydrate rather thanas storage carbohydrate. Comparison of assimilate distributionat the end of the light, and at the end of the dark period atthe first harvest led to the conclusion that light-mediatedmetabolism is more sensitive to SO2 exposure than dark metabolism,and that assimilate distribution might be controlled by at leasttwo processes exhibiting different SO2 sensitivities.  相似文献   

15.
Absorption rates of SO2 by pecan (Carya illinoensis (Wang) K.Koch) leaflets exposed to 2.6, 5.2, and 7.8 mg SO2 m–3were measured over a 2 h period. SO2 was rapidly absorbed bythe leaflets in all treatments during the initial 30–50min; the rate of uptake decreased to a rather constant levelthereafter. Total SO2 absorbed during the 2 h period was 15.6,25.6, and 38.9 nmol cm–2 for the low, medium, and highSO2 concentrations, respectively. Reductions in net photosyntheticrates were proportional to ambient SO2 concentrations and totalSO2 absorbed. Partial photosynthetic recovery occurred in alltreatments during a 2 h post-treatment period and full recoveryoccurred during a 12 h dark period. Exposure to SO2 resultedin slight increases in stomatal and boundary layer resistancesto CO2 and substantial increases in residual resistances. Absorptionrates of SO2 by alfalfa (Medicago saliva L.) exposed to 5.2mg SO2m–3 for 1 h were approximately double those of pecanexposed to the same ambient SO2 concentration. Alfalfa net photosyntheticrates were reduced 74% after 1 h exposure to 5.2 mg SO2 m–3while a depression of 42% occurred in pecan.  相似文献   

16.
The Carbon Economy of Rubus chamaemorus L. II. Respiration   总被引:1,自引:0,他引:1  
MARKS  T. C. 《Annals of botany》1978,42(1):181-190
Respiratory activity and seasonal changes in carbohydrate contentof the storage organs of Rubus chamaemorus L. have been investigated.Leaf dark respiration rate increases in a non-linear mannerfrom 0·7 mg CO2 evolved dm–2 h–1 at 0 °Cto 4·6 rng CO2 evolved dm–2 hh–1 at 30 °C.Root and rhizome respiration rates increase from 1 µ1O2 uptake g–1 fresh weight h–1 at 0.7 ° C to10 µ10, uptake g–1 f. wt h–1 at 20 °C.Rhizome carbohydrate reserves decline from a September peakof 33 per cent alcohol insoluble d. wt to 16 per cent in May. The circumpolar distribution of R. chamaemorus is discussedin relation to the evidence presented here and in the precedingpaper of the series.  相似文献   

17.
Dark respiration in attached and detached mature leaves of thefield bean (Vicia faba L.) was studied whilst leaves experiencedup to 60 h of darkness. The results showed: (1) the initialrespiration rate to vary according to the irradiance duringthe previous photoperiod; (2) the dark respiration rate (perunit area) of attached leaves to be essentially constant duringa normal 12 h night although there was a rapid loss in leafd. wt during this time; (3) after 12 h, the respiration rateof attached leaves decayed to an asymptotic value at about 36h; (4) the respiration rate of leaves detached at the end ofthe photoperiod and maintained in the dark on deionised water,decayed only after 36 h of darkness; (5) there was no differencebetween the respiration rate of attached and detached leavesduring the normal 12 h night. It is concluded that the dark respiration of attached fieldbean leaves is intially related to the synthesis and translocationof sucrose in addition to maintenance. After about 36 h, whenthe rate of CO2 efflux is more or less steady, the CO2 effluxreflects the intensity of maintenance processes only. The maintenancerespiration rate (determined after 60 h in the dark) rangedfrom 062 to 151 mg CO2 (g d. wt)–1 h–1 but wasrelatively unaffected by several applied treatments. Vicia faba L., field bean, respiration, maintenance, nitrate, non-structural carbohydrate, export  相似文献   

18.
This study investigated how CO2and temperature affect dry weight(d.wt) accumulation, total nonstructural carbohydrate (TNC)concentration, and partitioning of C and N among organs of twoimportant grasses of the shortgrass steppe,Pascopyrum smithiiRydb. (C3) andBouteloua gracilis(H.B.K.) Lag. ex Steud. (C4).Treatment combinations comprised two temperatures (20 and 35°C)at two concentrations of CO2(380 and 750 µmol mol-1),and two additional temperatures of 25 and 30°C at 750 µmolmol-1CO2. Plants were maintained under favourable nutrient andsoil moisture and harvested following 21, 35, and 49d of treatment.CO2-induced growth enhancements were greatest at temperaturesconsidered favourable for growth of these grasses. Comparedto growth at 380 µmol mol-1CO2, final d.wt of CO2-enrichedP.smithiiincreased 84% at 20°C, but only 4% at 35°C. Finald.wt ofB. graciliswas unaffected by CO2at 20°C, but wasenhanced by 28% at 35°C. Root:shoot ratios remained relativelyconstant across CO2levels, but increased inP. smithiiwith reductionin temperature. These partitioning results were adequately explainedby the theory of balanced root and shoot activity. Favourablegrowth temperatures led to CO2-induced accumulations of TNCin leaves of both species, and in stems ofP. smithii, whichgenerally reflected responses of above-ground d.wt partitioningto CO2. However, CO2-induced decreases in plant tissue N concentrationswere more evident forP. smithii. Roots of CO2-enrichedP. smithiihadgreater total N content at 20°C, an allocation of N below-groundthat may be an especially important adaptation for C3plants.Tissue N contents ofB. graciliswere unaffected by CO2. Resultssuggest CO2enrichment may lead to reduced N requirements forgrowth in C3plants and lower shoot N concentration, especiallyat favourable growth temperatures. Acclimation to CO2; blue grama; Bouteloua gracilis ; carbohydrate; climate change; global change; grass; growth; growth temperature optima; nitrogen; N uptake; Pascopyrum smithii; western wheatgrass  相似文献   

19.
Nodulated white clover plants (Trifolium repens L. cv. Huia)were grown as simulated swards for 71 d in flowing nutrientsolutions with roots at 11 C and shoots at 20/15 C, day/night,under natural illumination. Root temperatures were then changedto 3, 5, 7, 11, 13, 17 or 25 C and the total N2, fixation over21 d was measured in the absence of a supply mineral N. Alltreatments were subsequently supplied with 10 mmol m–2NO2 in the flowing solutions for 14 d, and the relativeuptake of N by N2, fixation and NO3 uptake was compared.Net uptake of K+ was measured on a daily basis. Root temperature had little effect on root d. wt over the 35-dexperimental period, but shoot d. wt increased by a factor of3.5 between 3 and 25 C, with the sharpest increase occurringat 7–11 C. Shoot: root d. wt ratios increased from 25to 68 with increasing temperature at 7–25 C. N2-fixationper plant (in the absence of NO2 ) increased with roottemperature at 3–13C, but showed little change above13 C. The ratios of N2 fixation: NO2 uptake over 14d (mol N: mol N) were 0.47–0.77 at 3–7 C, 092–154at 11–17 C, and 046 at 25 C, reflecting the dominanceof NO3 uptake over N2 fixation at extremes of high andlow root temperature. The total uptake of N varied only slightlyat 11–25 –C (095–110 mmol N plant–1),the decline in N2 fixation as root temperature increased above11 C was compensated for by the increase in NO 3 uptake.The % N in shoot dry matter declined with decreasing root temperature,from 32% at 13 C to 15% at 3 C. In contrast, concentrationsof N expressed on a shoot water content basis showed a modestdecrease with increasing temperature, from 345 mol m–3at 3 C to 290 mol m–3 at 25 C. Trifolium repens L, white clover, root temperature, N2 fixation, potassium uptake, nitrate uptake, flowing solution culture  相似文献   

20.
Plants of six contrasting genotypes of barley were raised fromvernalized (imbibed at 1 °C for 30 d) or non-vernalizedseeds and grown in 12 different controlled environments comprisingfactorial combinations of three photoperiods (10, 13 and 16h d–1), two day temperatures (18 and 28 °C) and twonight temperatures (5 and 13 °C). Except at longer daysfor Athenais or Arabi Abiad, the 28 °C day temperature wasgenerally supra-optimal and delayed awn emergence. At lowertemperatures and in photoperiods shorter than the critical value,PC, which delay awn emergence, the time from sowing to awn emergencefor five of the genotypes conformed to the equation 1/f=a +bT{macron}+cPwhere f is the time to awn emergence (d), T{macron} is meandiurnal temperature (°C), P is photoperiod (h d–1)and a, b and c are genotype-specific constants. In Arabi Abiad,however, significant responses to temperature were not detected.The low temperature pre-treatment of the seeds reduced the subsequenttime to awn emergence in Athenais and the autumn-sown genotypesAger, Arabi Abiad and Gerbel B, especially in longer days, buteither had no effect or tended to delay awn emergence in thespring-sown types Emir and Mona. In the spring-sown types PCwas outside the range investigated (i.e. > 16 h d–1),but in Ager it was approx. 13 h d–1 and in Gerbel B justover 13 h d–1. For plants of Arabi Abiad grown from vernalizedseeds Pc was almost 15 h, but  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号