共查询到20条相似文献,搜索用时 14 毫秒
1.
V Kéry J J Krepinsky C D Warren P Capek P D Stahl 《Archives of biochemistry and biophysics》1992,298(1):49-55
In this work we examine the carbohydrate binding properties of human placental mannose receptor (HMR) using a rapid and sensitive enzyme-linked immunosorbent microplate assay. The assay is based on the inhibition of binding of highly purified receptor to yeast mannan-coated 96-well plates. The specificity of ligand binding was inferred from the potency of different saccharides in blocking HMR binding to the mannan-coated wells. The relative inhibitory potency of monosaccharides was L-Fuc greater than D-Man greater than D-Glc greater than D-GlcNAc greater than Man-6-P much greater than D-Gal much greater than L-Rha much greater than GalNAc. The inhibitory potency of mannose increased by two orders of magnitude when linear oligomers were used. Oligomers containing alpha-1-3- and alpha-1-6-linked mannose residues were more inhibitory than those containing alpha-1-2- and alpha-1-4-linked mannoses. Linear or branched oligomannosides larger than three units did not have a significant influence on their inhibitory potency; rather, potency was found to decrease in comparison with oligomannosides with three units. Compared to linear oligomers, inhibition of binding was the best using branched mannose oligosaccharides, alpha-D-Man-bovine serum albumin conjugates, or mannan. A model is discussed in which branched ligand is bound to spatially distinct sites on the HMR. 相似文献
2.
Peräkylä M 《European biophysics journal : EBJ》2009,38(2):185-198
Molecular dynamics simulation techniques have been used to study the unbinding pathways of 1α,25-dihydroxyvitamin D3 from the ligand-binding pocket of the vitamin D receptor (VDR). The pathways observed in a large number of relatively short
(<200 ps) random acceleration molecular dynamics (RAMD) trajectories were found to be in fair agreement, both in terms of
pathway locations and deduced relative preferences, compared to targeted molecular dynamics (TMD) and streered molecular dynamics
simulations (SMD). However, the high-velocity ligand expulsions of RAMD tend to favor straight expulsion trajectories and
the observed relative frequencies of different pathways were biased towards the probability of entering a particular exit
channel. Simulations indicated that for VDR the unbinding pathway between the H1–H2 loop and the β-sheet between H5 and H6
is more favorable than the pathway located between the H1–H2 loop and H3. The latter pathway has been suggested to be the
most likely unbinding path for thyroid hormone receptors (TRs) and a likely path for retinoic acid receptor. Ligand entry/exit
through these two pathways would not require displacement of H12 from its agonistic position. Differences in the packing of
the H1, H2, H3 and β-sheet region explain the changed relative preference of the two unbinding pathways in VDR and TRs. Based
on the crystal structures of the ligand binding domains of class 2 nuclear receptors, whose members are VDR and TRs, this
receptor class can be divided in two groups according to the packing of the H1, H2, H3 and β-sheet region.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
3.
4.
5.
The function of vitamin D receptor in vitamin D action 总被引:5,自引:0,他引:5
Kato S 《Journal of biochemistry》2000,127(5):717-722
6.
C Kimmel-Jehan H M Darwish S A Strugnell F Jehan B Wiefling H F DeLuca 《Journal of cellular biochemistry》1999,74(2):220-228
The ability of vitamin D receptor-retinoid X receptor (VDR-RXR) heterodimers to induce a DNA bend upon binding to various vitamin D response elements (VDRE) has been investigated by circular permutation and phasing analysis. Recombinant rat VDR expressed in the baculovirus system and purified recombinant human RXR beta have been used. The VDREs were from 1,25-dihydroxyvitamin D3 (1,25-[OH]2D3) enhanced genes (rat osteocalcin, rOC; mouse osteopontin, mOP, and rat 1,25-dihydroxyvitamin D3-24-hydroxylase, r24-OHase), and a 1,25-(OH)2D3 repressed gene (human parathyroid hormone, hPTH). As shown by circular permutation analysis, VDR-RXR induced a distortion in DNA fragments containing various VDREs. Calculated distortion angles were similar in magnitude (57 degrees, 56 degrees, 61 degrees, and 59 degrees, respectively for rOC, mOP, r24-Ohase, and hPTH). The distortions took place with or without a 1,25-(OH)2D3 ligand. The centers of the apparent bend were found in the vicinity of the midpoint of all VDREs, except for rOC VDRE which was found 4 bp upstream. Phasing analysis was performed with DNA fragments containing mOP VDRE and revealed that VDR-RXR heterodimers induced a directed bend of 26 degrees, not influenced by the presence of hormone. In this study we report that similar to other members of the steroid and thyroid nuclear receptor superfamily, VDR-RXR heterodimers induce DNA bending. 相似文献
7.
8.
9.
10.
11.
On the basis of conformational analysis of the vitamin D side chain and studies using conformationally restricted synthetic vitamin D analogs, we have suggested the active space region concept of vitamin D: The vitamin D side-chain region was grouped into four regions (A, G, EA and EG) and the A and EA regions were suggested to be important for vitamin D actions. We extended our theory to known highly potent vitamin D analogs and found a new region F. The analogs which occupy the F region have such modifications as 22-oxa, 22-ene, 16-ene and 18-nor. Altogether, the following relationship between the space region and activity was found: Affinity for vitamin D receptor (VDR), EA > A> F > G > EG; Affinity for vitamin D binding protein (DBP), A > G,EA,EG; Target gene transactivation, EA > F > A > EG > or = G; Cell differentiation, EA > F > A > EG > or = G; Bone calcium mobilization, EA > GA > F > or = EG; Intestinal calcium absorption, EA = A > or = G > EG. We modeled the 3D structure of VDR-LBD (ligand binding domain) using hRARgamma as a template, to develop our structure-function theory into a theory involving VDR. 1alpha,25(OH)(2)D(3) was docked into the ligand binding pocket of the VDR with the side chain heading the wide cavity at the H-11 site, the A-ring toward the narrow beta-turn site, and the beta-face of the CD ring facing H3. Amino acid residues forming hydrogen bonds with the 1alpha- and 25-OH groups were specified: S237 and R274 forming a pincer type hydrogen-bond for the 1alpha-OH and H397 for the 25-OH. Mutants of several amino acid residues that are hydrogen-bond candidates were prepared and their biologic properties were evaluated. All of our mutation results together with known mutation data support our VDR model docked with the natural ligand. 相似文献
12.
Ousley AM Castillo HS Duraj-Thatte A Doyle DF Azizi B 《The Journal of steroid biochemistry and molecular biology》2011,125(3-5):202-210
The human vitamin D receptor (hVDR) is a member of the nuclear receptor superfamily, involved in calcium and phosphate homeostasis; hence implicated in a number of diseases, such as Rickets and Osteoporosis. This receptor binds 1α,25-dihydroxyvitamin D(3) (also referred to as 1,25(OH)(2)D(3)) and other known ligands, such as lithocholic acid. Specific interactions between the receptor and ligand are crucial for the function and activation of this receptor, as implied by the single point mutation, H305Q, causing symptoms of Type II Rickets. In this work, further understanding of the significant and essential interactions between the ligand and the receptor was deciphered, through a combination of rational and random mutagenesis. A hVDR mutant, H305F, was engineered with increased sensitivity towards lithocholic acid, with an EC(50) value of 10 μM and 40±14 fold activation in mammalian cell assays, while maintaining wild-type activity with 1,25(OH)(2)D(3). Furthermore, via random mutagenesis, a hVDR mutant, H305F/H397Y, was discovered to bind a novel small molecule, cholecalciferol, a precursor in the 1α,25-dihydroxyvitamin D(3) biosynthetic pathway, which does not activate wild-type hVDR. This variant, H305F/H397Y, binds and activates in response to cholecalciferol concentrations as low as 100 nM, with an EC(50) value of 300 nM and 70±11 fold activation in mammalian cell assays. In silico docking analysis of the variant displays a dramatic conformational shift of cholecalciferol in the ligand binding pocket in comparison to the docked analysis of cholecalciferol with wild-type hVDR. This shift is hypothesized to be due to the introduction of two bulkier residues, suggesting that the addition of these bulkier residues introduces molecular interactions between the ligand and receptor, leading to activation with cholecalciferol. 相似文献
13.
A run for a membrane vitamin D receptor. 总被引:9,自引:0,他引:9
E Marcinkowska 《Biological signals and receptors》2001,10(6):341-349
14.
The apparent binding energy for the interaction of the 3-hydroxyl group of chloramphenicol (CM) with the proposed general base (His-195) in chloramphenicol acetyltransferase (CAT) was determined by comparison of the dissociation constants of CM and 3-deoxyCM with CAT. The delta Gapp for this hydrogen bond to the N-3 of the imidazole ring is 1.5 kcal mol-1. Extending the use of modified ligands, in an approach which is complementary to that of site-directed mutagenesis, the binding affinity of each of a family of 3-halo-3-deoxychloramphenicol derivatives was observed to increase in the series F less than Cl less than Br less than I and is dominated by hydrophobic considerations. There is a linear free energy relationship between the dissociation constants for binding to CAT and an empirical hydrophobicity scale derived from reverse-phase HPLC retention times. The existence of such a relationship allows a true estimate of the total energetic contribution of interactions between the 3-hydroxyl group of CM and its contacts at the active site of CAT to be made on the basis of a regression analysis. The calculated value of delta Gbind (2.7 kcal mol-1) must include not only the hydrogen bond but also some favorable van der Waals interactions. The results demonstrate some of the advantages of an analysis of the energetics of ligand binding using modified ligands, in an approach that is formally analogous with and complementary to the use of site-directed mutations.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
15.
16.
Dehydroepiandrosterone status in postmenopausal women is determined by the gene for the vitamin D receptor. 总被引:2,自引:0,他引:2
Data documenting the indirect interaction of vitamin D and bone metabolism via hormonal systems are rare. The authors analysed the predictive role of the vitamin D receptor (VDR) gene for circulating sex steroids and their precursors in postmenopausal women. Using the PCR technique, the polymorphic FokI, ApaI, TaqI and BsmI sites of the VDR gene were determined in relation to serum dehydroepiandrosterone sulphate (DHEAS), androstenedione (AD), testosterone, and estradiol levels. After adjustment to body mass and years since menopause, circulating DHEAS was higher in the Ff genotype than in ff (p < 0.001) and FF genotypes (p < 0.05, ANCOVA followed by least significant difference multiple comparison tests). The Ff genotype also contributed to the highest BMD at the hip (p < 0.01 as compared to ff genotype) and at the spine (p < 0.05). No significant associations were found between ApaI, TaqI and BsmI polymorphisms and serum DHEAS or between FokI, ApaI, TaqI or BsmI and serum androstenedione, testosterone or estradiol. The study shows that the VDR gene predicts synthesis and/or metabolism of sexual steroid preursor DHEA in parallel with bone mineral density (BMD). The results indicate that DHEA production and bone mass share a common genetic control through VDR. 相似文献
17.
WEHI-3B D- cells differentiate in response to 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) but not to all-trans-retinoic acid (RA) or other inducing agents. Combinations of RA with 1,25-(OH)2D3 interact to produce synergistic differentiation of WEHI-3B D- cells. To determine factors involved in the synergistic interaction, expression of the 1,25-(OH)2D3 receptor (VDR) and retinoid receptors, RARalpha and RXRalpha, was measured. No VDR was detected in untreated WEHI-3B D- cells; however, RA and 1,25-(OH)2D3 when used as single agents caused a slight induction of the VDR and in combination produced a marked increase in the VDR. In contrast, no changes in RARalpha and RXRalpha were initiated by these compounds. An RAR-selective agonist combined with 1,25-(OH)2D3 produced synergistic differentiation of WEHI-3B D- cells, whereas an RXR-selective agonist did not. To gain information on the role of the VDR in the synergistic interaction, the VDR gene was transferred into WEHI-3B D+ cells, in which no VDR was detected and no synergism was produced. Expression of the VDR conferred differentiation responsiveness to 1,25-(OH)2D3 in WEHI-3B D+ cells. These findings suggest that (a) induction of VDR expression is a key component in the synergistic differentiation induced by 1,25-(OH)2D3 and RA and (b) RAR and not RXR must be activated for enhanced induction of the VDR and for the synergistic differentiation produced by RA and 1, 25-(OH)2D3. 相似文献
18.
G D Glick P L Toogood D C Wiley J J Skehel J R Knowles 《The Journal of biological chemistry》1991,266(35):23660-23669
Infection by influenza virus is initiated by a cellular adhesion event that is mediated by the viral protein, hemagglutinin, which is exposed on the surface of the virion. Hemagglutinin recognizes and binds to cell surface sialic acid residues. Although each individual ligand binding interaction is weak, the high affinity of influenza virus for cells that bear sialic acid residues is thought to result from a multivalent attachment process involving many similar recognition events. To evaluate such binding we have synthesized three series of compounds, each containing two sialic acid residues separated by spacers of different length, and have tested them as ligands for influenza hemagglutinin. No increased binding to the bromelain-released hemagglutinin ectodomain was seen for any of the bivalent compounds as determined by 1H NMR titration. In contrast, however, a spacer length between sialic acid residues of approximately 55 A sharply increases the binding of these bidentate species to whole virus as determined by hemagglutination inhibition assays. The most effective compound containing glycines in the linking chain displayed 100-fold increased affinity for whole virus over the paradigm monovalent ligand, Neu5Ac alpha 2Me. 相似文献
19.
Cho K Uneuchi F Kato-Nakamura Y Namekawa J Ishizuka S Takenouchi K Nagasawa K 《Bioorganic & medicinal chemistry letters》2008,18(15):4287-4290
Structure–activity relationship studies on 1α,25-dihydroxyvitamin D3-26,23-lactams (DLAMs), antagonists of vitamin D, were conducted, focusing on the substituents of the phenyl group. One of the derivatives (23S,25S)-DLAM-1P-3,5(OEt)2, showed potent antagonistic activity with an IC50 of 90 nM. 相似文献