首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Namalwa and Raji cells, originally obtained from a Burkitt tumor biopsy, grow as continuous cell lines in vitro and contain the Epstein-Barr virus (EBV)-related nuclear antigen EBNA (B. M. Reedman and G. Klein, Int. J. Cancer 11:499-520, 1973) and RNA homologous to at least 17 and 30% of the EBV genome, respectively (S. D. Hayward and E. Kieff, J. Virol. 18:518-525, 1976; T. Orellana and E. Kieff, J. Virol. 22:321-330, 1977). The polyribosomal and polyadenylated [poly(A)+] RNA fractions of Namalwa and Raji cells are enriched for a class of viral RNA homologous to 5 to 7% of EBV DNA (Hayward and Kieff, J. Virol. 18:518-525, 1976; Orellana and Kieff, J. Virol. 22:321-330, 1977). The objective of the experiments described in this communication was to determine the location within the map of the EBV genome (D. Given and E. Kieff, J. Virol. 28:524-542, 1978) of the DNA which encodes the viral RNA in the poly(A)+ and non-polyadenylated [poly(A)-] RNA fractions of Namalwa cells. Hybridization of labeled DNA homologous to Namalwa poly(A)+ or poly(A)- RNA to blots containing EcoRI, Hsu I, or Hsu I/EcoRI double-cut fragments of EBV (B95-8) or (W91) DNA indicated that these RNAs are encoded by DNA contained primarily in the Hsu I A/EcoRI A and Hsu I B/EcoRI A fragments and, to a lesser extent, in other fragments of the EBV genome. Hybridizations of Namalwa poly(A)+ and poly(A)- RNA in solution to denatured labeled EcoRI A or B fragments, Hsu I A, B, or D fragments, and Hsu I A/EcoRI A or Bam I S fragments and of Raji polyribosomal poly(A)+ RNA to the EcoRI A fragment indicated that (i) Namalwa poly(A)+ RNA is encoded primarily by 6 x 10(5) daltons of a 2 x 10(6)-dalton segment of DNA, Bam I S, which is tandemly reiterated, approximately 10 times, in the Hsu I A/EcoRI A fragment and is encoded to a lesser extent by DNA in the Hsu I B, EcoRI B, and Hsu I D fragments. Raji polyribosomal poly(A)+ RNA is encoded by a similar fraction of the EcoRI A fragment as that which encodes Namalwa poly(A)+ RNA. (ii) The fraction of the Bam I S fragment homologous to Namalwa poly(A)- RNA is similar to the fraction homologous to Namalwa poly(A)+ RNA. However, Namalwa poly(A)- RNA is homologous to a larger fraction of the DNA in the Hsu I B, Hsu I D, and EcoRI B fragments.  相似文献   

2.
D Given  D Yee  K Griem    E Kieff 《Journal of virology》1979,30(3):852-862
Previous data indicated that Epstein-Barr virus DNA is terminated at both ends by direct or inverted repeats of from 1 to 12 copies of a 3 X 10(5)-dalton sequence. Thus, restriction endonuclease fragments which include either terminus vary in size by 3 X 10(5)-dalton increments (D. Given and E. Kieff, J. Virol. 28:524--542, 1978; S. D. Hayward and E. Kieff, J. Virol. 23:421--429, 1977). Furthermore, defined fragments containing either terminus hybridize to each other (Given and Kieff, J. Virol. 28:524--542, 1978). The 5' ends of the DNA are susceptible to lambda exonuclease digestion (Hayward and Kieff, J. Virol. 23:421--429, 1977). To determine whether the terminal DNA is a direct or inverted repeat, the structures formed after denaturation and reannealing of the DNA from one terminus and after annealing of lambda exonuclease-treated DNA were examined in the electron microscope. The data were as follows. (i) No inverted repeats were detected within the SalI D or EcoRI D terminal fragments of Epstein-Barr virus DNA. The absence of "hairpin- or pan-handle-like" structures in denatured and partially reannealed preparations of the SalI D or EcoRI D fragment and the absence of repetitive hairpin- or pan-handle-like structures in the free 5' tails of DNA treated with lambda exonuclease indicate that there is no inverted repeat within the 3 X 10(5)-dalton terminal reiteration. (ii) Denatured SalI D or EcoRI D fragments reanneal to form circles ranging in size from 3 X 10(5) to 2.5 X 1O(6) daltons, indicating the presence of multiple direct repeats within this terminus. (iii) Lambda exonuclease treatment of the DNA extracted from virus that had accumulated in the extracellular fluid resulted in asynchronous digestion of ends and extensive internal digestion, probably a consequence of nicks and gaps in the DNA. Most full-length molecules, after 5 min of lambda exonuclease digestion, annealed to form circles, indicating that there exists a direct repeat at both ends of the DNA. (iv) The finding of several circularized molecules with small, largely double-strand circles at the juncture of the ends indicates that the direct repeat at both ends is directly repeated within each end. Hybridization between the direct repeats at the termini is likely to be the mechanism by which Epstein-Barr virus DNA circularizes within infected cells (T. Lindahl, A. Adams, G. Bjursell, G. W. Bornkamm, C. Kaschka-Dierich, and U. Jehn, J. Mol. Biol. 102:511-530, 1976).  相似文献   

3.
The arrangement of EcoRI, Hsu I, and Sal I restriction enzyme sites in the DNA of the B95-8 and W91 isolates of Epstein-Barr virus (EBV) has been determined from the size of the single-enzyme-cleaved fragments and from blot hybridizations that identify which fragments cut from the DNA with one enzyme contain nucleotide sequences in common with fragments cut from the DNA with a second enzyme. The DNA of the B95-8 isolate was the prototype for this study. The data indicate that (i) approximately 95 X 10(6) to 100 X 10(6) daltons of EBV (B95-8) DNA is in a consistent and unique sequence arrangement. (ii) Both termini are variable in length. One end of the molecule after Hsu I endonuclease cleavage consists of approximately 3,000 base pairs, with as many as 10 additional 500-base pair segments. The opposite end of the molecule after Sal I endonuclease cleavage consists of approximately 1,500 base pairs, with as many as 10 additional 500-base pair segments. (iii) The opposite ends of the molecule contain homologous sequences. The high degree of homology between the opposite ends of the molecule and the similarity in size of the "additional" 500-base pair segments suggests that there are identical repeating units at both ends of the DNA. The arrangement of restriction endonuclease fragments of the DNA of the W91 isolate of EBV is similar to that of the B95-8 isolate and differs from the latter in the presence of approximately 7 X 10(6) daltons of "extra" DNA at a single site. Thus, the size of almost all EcoRI, Hsu I, and Sal I fragments of EBV (W91) DNA is identical to that of fragments of EBV (B95-8) DNA. A single EcoRI fragment, C, of EBV (W91) DNA is approximately 7 X 10(6) daltons larger than the corresponding EcoRI fragment of EBV (B95-8) DNA. Digestion of EBV (W91) DNA with Hsu I or Sal I restriction endonucleases produces two fragments (Hsu I D1 and D2 or Sal I G2 and G3) which differ in total size by approximately 7 X 10(6) daltons from the fragments of EBV (B95-8) DNA. Furthermore, the EcoRI, Hsu I, and Sal I fragments of EBV (W91) and (B95-8) DNAs, which are of similar molecular weight, have homologous nucleotide sequences. Moreover, the W91 fragments contain only sequences from a single region of the B95-8 genome. Two lines of evidence indicate that the "extra" sequences present in W91 EcoRI fragment C are viral DNA and not cellular. (i) The molecular weight of the "enlarged" EcoRI C fragment of EBV (W91) DNA is identical to that of the EcoRI C fragment of another isolate of EBV (Jijoye), (ii) The HR-1 clone of Jijoye has previously been shown to contain DNA which is not present in the B95-8 strain but is present in the EcoRI C and Hsu I D2 and D1 fragments of EBV (W91) DNA (N. Raab-Traub, R. Pritchett, and E. Kieff, J. Virol. 27:388-398, 1978).  相似文献   

4.
Previous kinetic and absorption hybridization experiments had demonstrated that the DNA of the B95-8 strain of Epstein-Barr virus was missing approximately 10% of the DNA sequences present in the DNA of the HR-1 strain (R.F. Pritchett, S.D. Hayward, and E. Kieff, J. Virol. 15:556-569, 1975; B. Sugder, W.C. Summers, and G. Klein, J. Virol. 18:765-775, 1976). The HR-1 strain differs from other laboratory strains, including the B95-8 and W91 strains, and from virus present in throat washings from patients with infectious mononucleosis in its inability to transform lymphocytes into lymphoblasts capable of long-term growth in culture (P. Gerber, Lancet i:1001, 1973; J. Menezes, W. Leibold, and G. Klein, Exp. Cell. Res. 92:478-484, 1975; G. Miller, D. Coope, J. Niederman, and J. Pagano, J. Virol. 18:1071-1080, 1976; G. Miller, J. Robinson, L. Heston, and M. Lipman, Proc. Natl. Acad. Sci. U.S.A. 71:4006-4010, 1974). In the experiments reported here, the restriction enzyme fragments of Epstein-Barr virus DNA which contain sequences which differ among the HR-1, B95-8, and W91 strains have been identified. The DNA of the HR-1, B95-8, and W91 strains each differed in complexity. The sequences previously shown to be missing in the B95-8 strain were contained in the EcoRI-C and -D and Hsu I-E and -N fragments of the HR-1 strain and in the EcoRI-C and Hsu I-D and -E fragments of the W91 strain. The HR-1 strain was missing DNA contained in EcoRI fragments A and J through K and Hsu I fragment B of the B95-8 strain and in the EcoRI-A and Hsu I-B fragments of the W91 strain. The relationship of these data to the linkage map of restriction enzyme fragments of the DNA of the B95-8 and W91 strains (E. Kieff, N. Raab-Traub, D. Given, W. King, A.T. Powell, R. Pritchett, and T. Dambaugh, In F. Rapp and G. de-The, ed., Oncogenesis and Herpesviruses III, in press; D. Given and E. Kieff, submitted for publication) and the possible significance of the data are discussed.  相似文献   

5.
Tye 2 adenovirus DNA was divided into 14 fragments by sequential use of BamI, HsuI, SmaI, anc EcoRI endonuclease. Each fragment was purified by gel electrophoresis and subsequently cleaved with HaeIII endonuclease. From the number of fragments produced, we could calculate the number of HaeIII cleavage sites: there are a total of 187 sites. HaeIII sites were not randomly distributed along the adenovirus chromosome. Most sites were clustered in the G + C-rich left half of the chromosome. The sum of the molecular weights of the HaeIII fragments is 22.4 . 10(6), within 2 % of the molecular weight of adenovirus DNA (22.9 . 10(6).  相似文献   

6.
Linkage map of the fragments of herpesvirus papio DNA.   总被引:7,自引:6,他引:1       下载免费PDF全文
Herpesvirus papio (HVP), an Epstein-Barr-like virus, causes lymphoblastoid disease in baboons. The physical map of HVP DNA was constructed for the fragments produced by cleavage of HVP DNA with restriction endonucleases EcoRI, HindIII, SalI, and PvuI, which produced 12, 12, 10, and 4 fragments, respectively. The total molecular size of HVP DNA was calculated as close to 110 megadaltons. The following methods were used for construction of the map; (i) fragments near the ends of HVP DNA were identified by treating viral DNA with lambda exonuclease before restriction enzyme digestion; (ii) fragments containing nucleotide sequences in common with fragments from the second enzyme digest of HVP DNA were examined by Southern blot hybridization; and (iii) the location of some fragments was determined by isolating individual fragments from agarose gels and redigesting the isolated fragments with a second restriction enzyme. Terminal heterogeneity and internal repeats were found to be unique features of HVP DNA molecule. One to five repeats of 0.8 megadaltons were found at both terminal ends. Although the repeats of both ends shared a certain degree of homology, it was not determined whether they were identical repeats. The internal repeat sequence of HVP DNA was found in the EcoRI-C region, which extended from 8.4 to 23 megadaltons from the left end of the molecule. The average number of the repeats was calculated to be seven, and the molecular size was determined to be 1.8 megadaltons. Similar unique features have been reported in EBV DNA (D. Given and E. Kieff, J. Virol. 28:524-542, 1978).  相似文献   

7.
The effect of the restricting endonucleases R.EcoRI, R.BamI and R.SalI on the genome of type 7 simian adenovirus (SA-7) has been studied. Since the DNA has only one site of R.EcoRI recognition the enzyme cleaves SA-7 DNA into two fragments with the molecular weights 12.0 and 10.0 . 10(6). The restrictase R.BamI cleaves the SA-7 DNA at six sites producing 7 fragments with the molecular weights 6.6, 5.9, 3.8, 2.7, 1.3, 0.7 and 0.6 . 10(6). R.SalI cleavage yields 6 fragments with the molecular weights 8.1, 5.5, 4.3, 2.45, 1.2 and 0.6 . 10(6). The R.BamI and R.SalI fragments are arranged in the orders E-A-D-F-C-G-B and A-B-D-F-E-C, respectively. The only R.EcoRI recognition site is localized in the C fragment produced by R.BamI and in the B fragment produced by R.SalI.  相似文献   

8.
Epstein-Barr virus (EBV) originating from Burkitt's lymphoma (P3HR-1 and CC34-5), nasopharyngeal carcinoma (M-ABA), transfusion mononucleosis (B95-8), and a patient with acute myeloblastic leukemia (QIMR-WIL) was isolated from virus-carrying lymphoid cell lines after induction with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate. Viral DNA was analyzed by partial denaturation mapping and by use of the restriction endonucleases EcoRI, HindIII, and SalI and separation of fragments in 0.4% agarose. By using the restriction enzyme data of B95-8 (EBV) and W91 (EBV) obtained by Given and Kieff (D. Given and E. Kieff, J. Virol. 28:524-542, 1978), maps were established for the other virus strains. Comigrating fragments were assumed to be identical or closely related among the different strains. Fragments of different strains migrating differently were isolated, purified, radioactively labeled, and mapped by hybridization against blots of separated viral fragments. The results were as follows. (i) All strains studied were closely related. (ii) The number of internal repeats was variable among and within viral strains. (iii) B95-8 (EBV) was the only strain with a large deletion of about 12,000 base pairs at the right-hand side of the molecule. At the same site, small deletions of about 400 to 500 base pairs were observed in P3HR-1 (EBV) and M-ABA (EBV) DNA. (iv) P3HR-1 (EBV), the only nontransforming EBV strain, had a deletion of about 3,000 to 4,000 base pairs in the long unique region adjacent to the internal repeats carrying a HindIII site. (v) Small inserted sequences of 150 to 400 base pairs were observed in M-ABA (EBV) and B95-8 (EBV) at identical sites in the middle of the long unique region. (vi) Near this site, an insertion of about 1,000 base pairs was found in P3HR-1 (EBV) DNA. (vii) The cleavage patterns of P3HR-1 virus DNA and the results of blot hybridizations with P3HR-1 virus fragments are not conclusive and point to the possibility that in addition to the normal cleavage pattern some viral sequences may be arranged differently. Even though it is possible that small differences in the genome organization may have significant biological effects, the great similarity among different EBV strains does not favor the hypothesis that disease-specific subtypes exist.  相似文献   

9.
Previous experiments have demonstrated that positive selection markers recombined into the Epstein-Barr virus (EBV) genome enable the isolation of transforming or nontransforming mutant EBV recombinants in EBV-negative B-lymphoma (BL) cell lines (A. Marchini, J. I. Cohen, and E. Kieff, J. Virol. 66:3214-3219, 1992; F. Wang, A. Marchini, and E. Kieff, J. Virol. 65:1701-1709, 1991). However, virus has been recovered from a BL cell clone (BL41) infected with an EBV recombinant in only one instance (Wang et al., J. Virol. 65:1701-1709, 1991). We now compare the utility of four EBV-negative BL lines, BJAB, BL30, BL41, and Loukes, for isolating EBV recombinants and supporting their subsequent replication. Transforming or nontransforming EBV recombinants carrying a simian virus 40 promoter-hygromycin phosphotransferase (HYG) cassette were cloned by selecting newly infected BL cells for HYG expression. Most of the infected BL clones contained EBV episomes, and EBV gene expression was largely restricted to EBNA-1. Although the BJAB cell line was a particularly good host for isolating EBV recombinants (Marchini et al., J. Virol. 66:3214-3219, 1992), it was largely nonpermissive for virus replication, even in response to heterologous expression of the BZLF1 immediate-early transactivator. In contrast, approximately 50% of infected BL41, BL30, or Loukes cell clones responded to lytic cycle induction. Frequently, a substantial fraction of infected cells expressed the late lytic infection viral protein, gp350/220, and released infectious virus. Since BL cells do not depend on EBV for growth, transforming and nontransforming EBV recombinants were isolated and passaged.  相似文献   

10.
The Epstein-Barr virus (EBV) latent infection membrane protein 1 (LMP1) has previously been shown to cause EBV-negative B-lymphoma cells to grow in large clumps and to alter expression of surface activation and adhesion molecules (D. Wang, D. Liebowitz, F. Wang, C. Gregory, A. Rickinson, R. Larson, T. Springer, and E. Kieff, J. Virol. 62:1473-4184, 1988; F. Wang, C. Gregory, C. Sample, M. Rowe, D. Liebowitz, R. Murray, A. Rickinson, and E. Kieff, J. Virol. 64:2309-2318, 1990). In order to identify functional elements in the amino-terminal cytoplasmic domain and the first four transmembrane domains which were previously shown to be essential for LMP1 activity, three smaller deletion mutants were constructed and tested for their activity in B-lymphoma cells. The results of the present study indicate that the amino-terminal cytoplasmic domain, the first transmembrane domain, and the third and fourth transmembrane domains each contribute to LMP1's effects on B lymphocytes.  相似文献   

11.
The role of Epstein-Barr virus (EBV) early antigen diffuse component (EA-D) and its relationship with EBV DNA polymerase in EBV genome-carrying cells are unclear, EBV-specified DNA polymerase was purified in a sequential manner from Raji cells treated with phorbol-12,13-dibutyrate and n-butyrate by phosphocellulose, DEAE-cellulose, double-stranded DNA-cellulose, and blue Sepharose column chromatography. Four polypeptides with molecular masses of 110,000, 100,000, 55,000, and 49,000 daltons were found to be associated with EBV-specified DNA polymerase activity. A monoclonal antibody which could neutralize the EBV DNA polymerase activity was prepared and found to recognize 55,000- and 49,000-dalton polypeptides. An EA-D monoclonal antibody, R3 (G. R. Pearson, V. Vorman, B. Chase, T. Sculley, M. Hummel, and E. Kieff, J. Virol. 47:183-201, 1983), was also able to recognize these same two polypeptides associated with EBV DNA polymerase activity. It was concluded that EBV EA-D polypeptides, as identified by R3 monoclonal antibody, are critical components of EBV DNA polymerase.  相似文献   

12.
The latent membrane protein (LMP) of Epstein-Barr virus (EBV) has a short half-life (V. R. Baichwal and B. Sugden, J. Virol, 61:866-875, 1987; K.P. Mann and D. Thorley-Lawson, J. Virol, 61:2100-2108, 1987), is localized in patches in the membrane (D. Liebowitz, D. Wang, and E, Kieff, J. Virol, 58:233-237, 1986), and associates with the cytoskeleton in EBV-immortalized B lymphocytes (D. Liebowitz, R. Kopan, E. Fuchs, J. Sample, and E. Kieff, Mol. Cell. Biol. 7:2299-2308, 1987; K. P. Mann and D. Thorley-Lawson, J. Virol. 61:2100-2108, 1987). Deletion mutants of LMP that are either positive or negative in the induction both of anchorage-independent growth of BALB/c 3T3 cells (V. R. Baichwal and B. Sugden, Oncogene 4:67-74, 1989) and of cytotoxicity in a variety of cells (W. Hammerschmidt, B. Sugden, and V. R. Baichwal, J. Virol. 63:2469-2475, 1989) have been studied to identify the biochemical properties of this protein that correlate with its effects on cell growth. Mutant LMP proteins that are metabolically stable, do not associate with the cytoskeleton, and exhibit a diffuse plasma membrane localization also do not induce anchorage-independent growth in rodent cells or cytotoxicity in B lymphoblastoid cells. In contrast, a mutant of LMP that is functionally identical to the wild-type protein has a half-life, membrane localization, and cytoskeletal association similar or identical to those of LMP. These results are consistent with the hypothesis that LMP's rapid turnover, association with the cytoskeleton, and patching in the membrane are required for it to affect cell growth.  相似文献   

13.
A J Van der Eb  A Houweling 《Gene》1977,2(3-4):133-146
Five clones of rat kidney cells transformed by a small restriction endonuclease fragment of adenovirus 5 (Ad5) DNA (fragment HsuI G, which represents the left terminal 7% of the adenovirus genome) were analyzed with respect to the viral DNA sequences present in the cellular DNAs. In these analyses, the kinetics of renaturation of 32P-labeled specific fragments of Ad5 DNA was measured in the presence of a large amount of DNA extracted either from each of the transformed cell lines or from untransformed cells. The fragments were produced by digestion of 32P-labeled adenovirus 5 DNA with endo R.HsuI, or by digestion of 32P-labeled fragment HsuI G of adeno 5 DNA with endo R.HpaI. All five transformed lines were found to contain DNA sequences homologous to 75--80% of Ad5 fragment HsuI G only. Clones II and V contained approximately 48 copies per quantity of diploid cell DNA, clone VI about 35 copies, clone IV 22 copies and clone III 5--10 copies. These results indicate that a viral DNA segment as small as 5.5% of the Ad5 genome, contains sufficient information for the maintenance of transformation.  相似文献   

14.
L Petti  J Sample  F Wang    E Kieff 《Journal of virology》1988,62(4):1330-1338
Three distantly homologous neighboring long open reading frames in the Epstein-Barr virus (EBV) genome are preceded by short open reading frames. The leftmost short and long open reading frames encode EBNA3, a nuclear protein which is slightly smaller (145 kilodaltons [kDa]) than two other nuclear proteins (150 to 155 kDa) detected in Western blots (immunoblots) of latently infected cell protein (K. Hennessy, F. Wang, E. Woodland-Bushman, and E. Kieff, Proc. Natl. Acad. Sci. USA 83:5693-5697, 1986; I. Joab, D. T. Rowe, M. Bodescot, J.-C. Nicolas, P. J. Farrell, and M. Perricaudet, J. Virol. 61:3340-3344, 1987). We have demonstrated that the most rightward short (BERF3) and long (BERF4) open reading frames are spliced in frame at the 3' end of a 5-kilobase latently infected cell RNA and that this RNA begins within or upstream of the EBV long internal repeat. EBV-immune human antibodies specific for the long open reading frame translation product identified a 155-kDa protein on Western blots of latently infected cell protein and specifically reacted with large nonnucleolar nuclear granules in every latently infected cell. Expression of the cDNA in BALB/c 3T3 cells resulted in translation of full-size EBNA3C but had no effect on cell morphology, contact inhibition, or serum independence.  相似文献   

15.
We present the locations of the cleavage sites for the BamI, KpnI, and SalI restriction endonucleases within the DNA molecules of herpes simplex virus type 1 (HSV-1) strains Justin and F. These restriction enzymes cleave the HSV-1 DNA at many sites, producing relatively small fragments which should prove useful in future studies of HSV-1 gene structure and function. The mapping data revealed the occurrence of heterogeneity within three regions of the viral genome including (i) the region spanning map coordinates 0.74--0.76, (ii) the ends of the large (L) DNA component, and (iii) the junction between the large (L) and the small (S) components. The heterogeneity in the ends of L and the S-L junctions of HSV-1 (Justin) and HSV-1 (F) DNAs was grossly similar to that previously reported to occur in the ends of L and the S-L junctions of the HSV-1 (KOS) DNA (M. J. Wagner and W. C. Summers, J. Virol. 27:374--387, 1978). Thus, cleavage of these regions with restriction endonucleases yielded sets of minor fragments differing in size by constant increments. However, the various strains of HSV-1 differed with respect to the numbers, size increments, and relative molarities of the various minor fragments, suggesting that the parameters of the heterogeneity are inherited in the structural makeup of the HSV-1 genome. The strain dependence of the pattern of heterogeneity can be most easily explained in terms of variable sizes of the terminally reiterated a sequence, contained in the DNA molecules of these three strains of HSV-1.  相似文献   

16.
The cleavage of the DNAs of the B95-8 and P3HR-1 virus strains of Epstein-Barr virus by the restriction endonucleases EcoRI, HindIII and BamI was investigated using a new technique for quantitative evaluation of the fluorescence of ethidium stained DNA fragments separated on agarose gels. The results obtained with B95-8 DNA showed that in addition to the limited repetitions of nucleotide sequences observed in the EcoRI and HindIII cleavage patterns, the molecule contained a BamI fragment with a molecular mass of 2.0 megadaltons which was present in a total of about 11 copies and localized to a limited part of the DNA molecule. The same sequences were also present in the P3HR-1 DNA albeit in a lower molar ratio. P3HR-1 DNA yielded restriction enzyme cleavage patterns suggesting DNA sequence heterogeneity of P3HR-1 virus. No fragment was present in more than about 4 copies per molecule of P3HR-1 DNA. Comparison of the restriction enzyme cleavage patterns of P3HR-1 and B95-8 DNA revealed a high degree of structural homology emphasized by nucleic acid hybridization experiments with EBV complementary RNA synthesized in vitro.  相似文献   

17.
The sites in Escherichia coli bacteriophage lambda DNA cleaved by the site-specific endonuclease isolated from Bacillus amyloliquefaciens H (BamI) are found to be at 0.114, 0.466, 0.580, 0.713, and 0.861 lambda units. The sites were located by analysis of the products of digestion of lambda DNA and lambda-ara transducing phage DNA, and verified by double digestion with BamI and EcoRI.  相似文献   

18.
M Heller  P Gerber    E Kieff 《Journal of virology》1981,37(2):698-709
EcoRI, HindII, SalI, nd XbaI restriction endonuclease maps of herpesvirus papio (HVPapio) DNA were derived by determining the fragment sizes and the linkage relationships between fragments generated by the different enzymes. The data indicate that HVPapio DNA has a single molecular arrangement which is similar to that of Epstein-Barr virus DNA. The size of the DNA was 110 X 10(6) to 114 X 10(6) daltons. Restriction fragments from both ends varied in the number of repeats of a 4 X 10(5)-dalton sequence, TR, and hybridized to each other. This suggests that there is an identical repeating unit, TR, at both ends of the DNA. There were usually six tandem repetitions (range, 1 to 11) of a 2 X 10(6)-dalton sequence, IR, within the DNA. IR separated the DNA into two domains of largely unique sequence complexity, a 9 X 10(6)-dalton segment, Us, and an 88 X 10(6)-dalton segment, UL. There was homology between DNA fragments which mapped at 25 X 10(6) to 29 X 10(6) to 91 X 10(6) to 95 X 10(6) daltons in UL.  相似文献   

19.
A relatively simple method has been used to clone the gene coding for the respiratory NADH dehydrogenase (NADH-ubiquinone oxidoreductase) of Escherichia coli from unfractionated chromosomal DNA. The restriction endonucleases EcoRI, BamI and HindIII were used to construct three hybrid plasmid pools from total E. coli DNA and the amplifiable plasmids pSF2124 and pGM706. Three different restriction endonucleases were used to increase the chances of cloning the ndh gene intact. Mobilization by the plasmid F was used to transfer the hybrid plasmids into ndh mutants and selection was made for Apr and complementation of ndh. DNA fragments complementing ndh were isolated from both the EcoRI and HindIII hybrid plasmid pools. The strain carrying the hybrid plasmid constructed with EcoRI produced about 8--10 times the normal level of the respiratory NADH dehydrogenase in the cytoplasmic membrane. Treating the cells with chloramphenicol to increase the plasmid copy number allowed the level of NADH dehydrogenase in the membrane to be increased to 50--60 times the level in the wild type. The results indicate the potential of gene cloning for the specific amplification of particular proteins prior to their purification.  相似文献   

20.
Incubation of the DNA of the B95-8 strain of Epstein-Barr virus [EBV (B95-8) DNA] with EcoRI, Hsu I, Sal I, or Kpn I restriction endonuclease yielded 8 to 15 fragments separable on 0.4% agarose gels and ranging in molecular weight from less than 1 to more than 30 x 10(6). Bam I and Bgl II yielded fragments smaller than 11 x 10(6). Preincubation of EBV (B95-8) DNA with lambda exonuclease resulted in a decrease in the Hsu I A and Sal I A and D fragments, indicating that these fragments are positioned near termini. The electrophoretic profiles of the fragments produced by cleavage of the DNA of the B95-8, HR-1, and Jijoye strains of EBV were each distinctive. The molecular weights of some EcoRI, Hsu I, and Sal I fragments from the DNA of the HR-1 strain of EBV [EBV (HR-1) DNA] and of EcoRI fragments of the DNA of the Jijoye strain of EBV were identical to that of fragments produced by cleavage of EBV (B95-8) DNA with the same enzyme, whereas others were unique to each strain. Some Hsu I, EcoRI, and Sal I fragments of EBV (HR-1) DNA and Kpn I fragments of EBV (B95-8) DNA were present in half-molar abundance relative to the majority of the fragments. In these instances, the sum of the molecular weights of the fragments was in excess of 10(8), the known molecular weight of EBV (HR-1) and (B95-8) DNA. The simplest interpretation of this finding is that each EBV (HR-1), and possibly also (B95-8), DNA preparation contains two populations of DNA molecules that differ in the arrangement of DNA sequences about a single point, such as has been described for herpes simplex virus DNA. Minor fragments could also be observed if there were more than one difference in primary structure of the DNAs. The data do not exclude more extensive heterogeneity in primary structure of the DNA of the HR-1 strain. However, the observation that the relative molar abundance of major and minor fragments of EBV (HR-1) DNA did not vary between preparations from cultures that had been maintained separately for several years favors the former hypothesis over the latter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号