首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The global metabolite profiles of endogenous compounds excreted in urine by male Wistar-derived and Zucker (fa/fa) obese rats were investigated from 4 to 20 weeks of age using both 1H NMR spectroscopy and HPLC-TOF/MS with electrospray ionisation (ESI). Multivariate data analysis was then performed on the resulting data which showed that the composition of the samples changed with age, enabling age-related metabolic trajectories to be constructed. At 4 weeks it was possible to observe differences between the urinary metabolite profiles from the two strains, with the difference becoming more pronounced over time resulting in a marked divergence in their metabolic trajectories at 8-10 weeks. The changes in metabolite profiles detected using 1H NMR spectroscopy included increased protein and glucose combined with reduced taurine concentrations in the urine of the Zucker animals compared to the Wistar-derived strain. In the case of HPLC-MS a number of ions were found to be present at increased levels in the urine of 20 week old Zucker rats compared to Wistar-derived rats including m/z 71.0204, 111.0054, 115.0019, 133.0167 and 149.0454 (negative ion ESI) and m/z 97.0764 and 162.1147 (positive ion ESI). Conversely, ions m/z 101.026 and 173.085 (negative ion ESI) and m/z 187.144 and 215.103 (positive ion ESI) were present in decreased amounts in urine from Zucker compared to Wistar-derived rats. Metabolite identities proposed for these ions include fumarate, maleate, furoic acid, ribose, suberic acid, carnitine and pyrimidine nucleoside. The utility of applying metabonomics to understanding disease processes and the biological relevance of some of the findings are discussed.  相似文献   

2.
A highly accurate method has been developed for detection and quantitation of 3 alpha-hydroxy-1-methylen-5 alpha-androstan-17-one, the major urinary metabolite of methenolone acetate (Primobolan) in man. Unlabelled as well as 2H-labelled 3 alpha-hydroxy-1-methylen-5 alpha-androstan-17-one were synthesized from 1-methylen-5 alpha-androstane-3,17-dione. A fixed amount of the internal standard was added to a fixed amount of urine and the mixture was treated with Helix pomatia for 24 h. After extraction and purification by t.l.c., the mixture was converted into methoxime--trimethylsilyl derivative and analyzed by combined GC--MS. Unlabelled 3 alpha-hydroxy-1-methylen-5 alpha-androstan-17-one could be quantitated from the ratio between the tracings of the ions at m/z 372 and m/z 375 (corresponding to the M-31 ions). In alternative procedures, the ions at m/z 403 and m/z 406 (molecular ions) as well as m/z 282 and m/z 285 (M-90-31 ions) could be used. Under the conditions employed, the metabolite could be identified and quantitated in concentrations exceeding 10 ng/ml. Significant amounts of the metabolite could be detected in urine during 5 days after a single oral ingestion of 10 mg of Primobolan. The method has been successfully used for analyses of urine samples obtained from athletes involved in competition.  相似文献   

3.
Indole 3-acetic acid (IAA) was analyzed in apple, orange, and prune tissue by GC-MS by monitoring the protonated molecular ion of its methyl ester at mass to charge ratio (m/z) 190 together with the major fragment ion at m/z 130 and the corresponding ions from the methyl esters of either [2H4]IAA (m/z 194, 134) or [2H5]IAA (m/z 195, 135). Abscisic acid (ABA) was analyzed by monitoring the major fragment ions of its methyl ester at m/z 261 and m/z 247 and the corresponding ions from the methyl ester of [2H3]ABA (m/z 264, 250). Detection limits for IAA and ABA were 1 and 10 picograms, respectively using standards and 1 nanogram per gram dry weight for both phytohormones in plant tissue.  相似文献   

4.
We have determined three opioidmimetics (compounds I-III) in the rat brain dialysates after intraperitoneal (i.p.) administration of compounds I-III using a liquid chromatography/mass spectrometry with tandem mass spectrometry (LC-MS/MS). The dialysate samples with methanol were directly analyzed by online column-switching liquid chromatography. Using multiple reaction monitoring (MRM, product ions m/z 421 of m/z 657 for compound I, m/z 421 of m/z 643 for compound II, and m/z 407 of m/z 629 for compound III) on LC-MS/MS with electrospray ionization (ESI), opioidmimetics in rat brain dialysates were determined. Calibration curves of the method showed a good linearity in the range of 10-100 ng/ml for each compound. The limit of determination was estimated to be ca. 1 ng/ml for compounds II and III, and ca. 5 ng/ml for compound I, respectively. The precision of analysis showed coefficients of variation ranging from 4.7 to 10.4% at compound III concentration (10-100 ng/ml) in Ringer's solution. As a result, the procedure proved to be very suitable for routine analysis. The method was applied to the analysis of three opioidmimetics in the brain dialysate samples from rats treated with these compounds.  相似文献   

5.
A method for determining the site and extent of deuterium (D) labeling of glucose by GC/MS and mass fragmentography was developed. Under chemical and electron impact ionization, ion clusters m/z 328, 242, 217, 212, and 187 of glucose aldonitrile pentaacetate and m/z 331 and 169 of pentaacetate derivative were produced. From the mass spectra of 13C- and D-labeled reference compounds, glucose carbon and hydrogen (C-H) positions included in these fragments were deduced to be m/z 328 = C1-C6, 2,3,4,5,6,6-H6; m/z 331 = C1-C6, 1,2,3,4,5,6,6-H7; m/z 169 = C1-C6, 1,3,4,5,6,6-H6; m/z 187 = C3-C6, 3,4,5,6,6-H5; m/z 212 = C1-C5, 2,3,4,5-H4; m/z 217 = C4-C6, 4,5,6,6-H4; and m/z 242 = C1-C4, 2,3,4-H3. After correction for isotope discrimination and deuterium-hydrogen exchange, the D enrichment of these fragments can be quantitated using selective ion monitoring, and the D enrichment of all C-H positions can be obtained by the difference in enrichment of the corresponding ion pairs. The validity of this approach was tested by examining D enrichment of known mixtures of 1-d1-, 2-d1-, 3-d1-, and 5,6,6-d3-glucose with unlabeled glucose and D enrichment of perdeuterated glucose using these fragments. This method was used to determine deuterium incorporation in C1 through C6 of blood glucose in fasted (24 h) rats infused with deuterated water. The distribution of deuterium was similar to that found by Postle and Bloxham (1980, Biochem. J. 192, 65-73). Approximately one deuterium atom was incorporated into C5 and only 75% deuterium atom was incorporated into C2. The enrichment of C2 and C6 of glucose relative to that of water indicated that 74 +/- 9% of plasma glucose was newly formed 4 h after the onset of deuterium infusion, and gluconeogenesis accounted for about 76 +/- 7% of the glucose 6-phosphate flux.  相似文献   

6.
In order to study the biosynthesis of agatharesinol, a norlignan, l-phenylalanine-[ring-2,3,4,5,6-2H] and trans-cinnamic acid-[ring-13C6] were administered to fresh sapwood sticks of Cryptomeria japonica (sugi, Japanese cedar), that is, the labeled precursors were allowed to be absorbed through the tangential section of the wood sticks. The wood sticks were then maintained in high humidity desiccators for approximately 20 d after which ethyl acetate (EtOAc) extracts of the wood sticks were analyzed by gas chromatography-mass spectrometry (GC-MS). Native agatharesinol (trimethylsilylated) produces an m/z 369 ion and an m/z 484 ion that are characteristic of its structure. Agatharesinol formed in the sapwood sticks treated with the deuterium-labeled l-phenylalanine generated both of these ions together with m/z 373 and 377 ions (m/z 369+4 and +8, respectively), and also m/z 488 and 492 ions (m/z 484+4 and +8, respectively). Generation of m/z 373 and 488 ions is attributed to the substitution by deuterium of the four hydrogen atoms of either of the p-hydroxyphenyl rings of agatharesinol, and that of m/z 377 and 492 ions is attributed to the substitution by deuterium of the eight hydrogen atoms of both p-hydroxyphenyl rings. In the administration of the 13C-labeled trans-cinnamic acid, m/z 375 and 381 ions (m/z 369+6 and +12, respectively), and also m/z 490 and 496 ions (m/z 484+6 and +12, respectively) were found, indicating that either aromatic ring or both aromatic rings of agatharesinol were 13C-labeled. Consequently, assimilation of the labeled precursors into agatharesinol was clearly detected, and an experimental procedure for studies on the biosynthesis was developed.  相似文献   

7.
An electrospray ionization (ESI) compatible separation of phospholipids (PL), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), and phosphatidylcholine (PC), was performed on a C18 column by reversed phase High Performance Liquid Chromatography (HPLC) with minimal ESI suppression. The mobile phase, used isocratically, consisted of methanol and water. ESI was used to efficiently transfer the ions present in solution to the gas phase for mass spectrometric (MS) detection. Formation of negative ions was reinforced by incorporating piperidine post column. Limits of detection (LOD) and limits of quantitation (LOQ) were experimentally determined to be 20 and 60 fmol/microl, respectively, when acquiring data in the selected ion monitoring (SIM) mode monitoring three ions with a single quadrupole MS. When acquiring data from m/z 110-900 in the scanning mode, the LOD and LOQ were experimentally determined to be 1 pmol/microl and 3 pmol/microl. When acquiring product ion spectra for m/z 747, the LOD and LOQ were experimentally determined to be 446 attomol/microl and 1.3 fmol/microl, respectively.  相似文献   

8.
Negative ion fast atom bombardment mass spectrometry (NI-FAB/MS) was employed to characterize the fatty acids esterified to the lipid A backbone of lipopolysaccharides (LPS) of gram-negative bacteria. LPS and their chemically derived lipid A produced readily detectable fragment ions characteristic of fatty acids. The NI-FAB/MS method is specific, yielding ions indicative of ester- but not of amide-bound fatty acids. The mass spectra of Enterobacteriaceae LPS revealed the presence of lauric (m/z 199), myristic (m/z 227), palmitic (m/z 255), and 3-hydroxymyristic (m/z 243) acids. Pseudomonas aeruginosa LPS gave distinctive fragment ions indicative of 3-hydroxydecanoic (m/z 187), lauric, and 2-hydroxylauric (m/z 215) acids. The Neisseria gonorrhoeae LPS could be distinguished from the others due to the presence of ester-linked 3-hydroxylauric acid. All of the LPS gave abundant ions of m/z 177 and 159, which were derived from diphosphoryl substituents. The use of NI-FAB/MS thus allowed rapid identification of lipid A esterified fatty acids without chemical derivatization or gas chromatographic analysis.  相似文献   

9.
Several phosphatidylcholines (PC) and a phosphatidylethanolamine (PE) were subjected to liquid ionization (LI) mass spectrometry, in which a sample is ionized through energy transfer from metastable argon atoms under atmospheric pressure. Commercially available and synthesized, saturated or unsaturated fatty acid containing phospholipids and their mixtures were studied. A sample either as a concentrated chloroform-methanol solution or with glycerol (matrix) gave characteristic peaks such as MH+ and four fragment ions. One of the fragment ions (e.g., m/z 551 of PC 16:0, 16:0) containing both fatty acid residues has been commonly observed with other ionization methods such as CI, FD, and FAB, but the other fragment ions have not been observed in other mass spectra with one exception on desorption CI. Ions b and d (e.g., m/z 464 and 328, respectively, for PC 16:0, 16:0) contain one fatty acyl residue and the other ion containing the phosphorylcholine moiety appears at m/z 196 for PC. Thus the masses of the MH+ ion and these fragment ions provide useful structural information even in the case of a mixture. The ion b (e.g., m/z 488 of PC 18:0, 18:2) observed during an early period of heating was formed mainly by the loss of one acyl group at sn-1 of the glycerol backbone and thus may be used to differentiate the positional specificities of the constituent fatty acids. The temperature of the sample, however, should be controlled precisely, because it has a significant effect on the mass spectrum. The present method (LI) also provided useful information for a mixture of PC and PE.  相似文献   

10.
Hepatic glucose production (HGP) and glucose carbon recycling are traditionally estimated by the combined use of hydrogen and carbon-labeled glucose tracers. A single-isotope method such as that of Reichard et al. for the determination of HGP and glucose carbon recycling requires the determination of activities in different glucose carbons by chemical degradation. Since the 13C content in the glucose carbon skeleton can be determined from mass fragmentography, the use of 13C-labeled glucose and mass fragmentography can provide a single-isotope method for the quantification of the recycled carbons. Correction for the recycling makes it possible to determine the true HGP. In this study, (1-13C1)glucose and mass fragmentography were used for the determination of HGP and glucose carbon recycling in six colon cancer patients. Molar enrichment of the molecular ion (m/z 328 cluster of glucose aldonitrile pentaacetate) was used to determine 'uncorrected' HGP, which was 1.93 +/- 0.11 mg kg-1 min-1 (mean +/- s.e.m.). The difference in molar enrichment of the molecular ion C1-C6 (m/z 328) and the ion corresponding to C1-C4 fragment (m/z 242) was used to determine the contribution of recycled label carbon. After this correction, the 'corrected' HGP was 2.04 +/- 0.12 mg kg-1 min-1, which is not significantly different from the 'true' HGP rate of 2.05 +/- 0.15 mg kg-1 min-1 determined by using (6-3H)glucose. HGP determined from the enrichment of the molecular ion C1-C6 underestimates true HGP, as expected. The corrected HGPs correlate well with those from 6-3H method (r = 0.86, y = 1.06x - 0.12; p less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The chemical structure of lignin, a complex, irregular polymer of phenylpropane units that occurs in plant cell walls, was investigated using time-of-flight secondary ion mass spectrometry (ToF-SIMS). The positive ToF-SIMS spectra of lignin isolated from pine and beech wood showed prominent secondary ions possessing guaiacyl (at m/z 137 and 151) or syringyl (at m/z 167 and 181) rings, which are the basic building units of lignin polymer. This shows that ToF-SIMS is a useful tool for lignin structural analysis. The peaks at m/z 137 and 167 were assigned as the C6-C1 ion, and the peaks at m/z 151 and 181 may be double-component, the C6-C1 ion and the C6-C2 ion. We confirmed the characteristic guaiacyl ions using a synthetic lignin model compound, dehydrogenation polymer (DHP), which was formed by polymerizing of unlabeled and deuterium-labeled coniferyl alcohols. The formation mechanism of the main secondary ions was deduced by labeling specific positions of coniferyl alcohols with a stable isotope to study the relationship between chemical structure and secondary ion formation in ToF-SIMS.  相似文献   

12.
11 alpha-Hydroxy-9,15-dioxo-2,3,4,5,20-pentanor-19-carboxyprostano ic acid (PGE-M) and 9 alpha,11 alpha-dihydroxy-15-oxo-2,3,4,5,20-pentanor-19-carboxyprostanoic acid (PGF-M) in urine were determined in an isotope dilution assay by gas chromatography/triple-stage quadrupole mass spectrometry. After addition of the 2H7-labeled internal standard, O-methylhydroxylamine hydrochloride in acetate buffer was added either directly (PGE-M) or after standing overnight at pH 10 (PGF-M) to form the methoxime. The sample was acidified to pH 2.5 and PGE-M and PGF-M were extracted with ethyl acetate/hexane. Then the prostanoids were derivatized to the pentafluorobenzyl ester and purified by thin-layer chromatography and the trimethylsilyl ether was formed. The products were quantified by gas chromatography/triple-stage quadrupole mass spectrometry. For PGE-M, the fragment ions m/z 349 and m/z 356 (2H7 standard) (daughter ions of m/z 637 and m/z 644 (2H7 standard] were used. The results of the PGE-M assay were compared with those of an assay using the [2H3]methoxime as the internal standard. For determination of PGF-M, the daughter ions m/z 484 and m/z 491 (2H7 standard) with the parent ions m/z 682 and m/z 689 (2H7 standard) were chosen.  相似文献   

13.
Miao F  Lu D  Li Y  Zeng M 《Analytical biochemistry》2006,352(2):176-181
After first being analyzed by HPLC, 4 free carotenoids, 15 astaxanthin monoesters, 12 astaxanthin diesters, and 3 astacin monoesters in Haematococcus pluvialis were identified by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (LC-(APCI)MS). Identification of each compound was based on the characteristic fragment ions of the positive ion mode, negative ion mode, and MS(2). Astaxanthin esters were identified based on the loss of one or two fatty acids. In a positive ion mode, astaxanthin monoesters had characteristic fragment ions at m/z 597 [M+H-fatty acid](+) and m/z 579 and 561 that resulted from a continuous loss of water. The relative intensity of m/z 579 in MS(2) amounted to more than 80% of that of the molecular ion. In astaxanthin diesters, the intensity of m/z 561 occasionally was equal to that of m/z 579, but in general the former, amounting to 50 to 60% or more of the molecular ion, was stronger than the latter, which decreased to 20 to 30% of the molecular ion. In addition, a set of compounds with maximum absorbance at 400 nm, detected by high-performance liquid chromatography-diode array detector (HPLC-DAD), had strong characteristic fragment ions at m/z 871 and 593 in the positive ion mode MS(2). They were presumed to be linolenic acid or an isomer of omega-6-gamma-linolenic acid esters of astacin.  相似文献   

14.
Mass spectrometry of disaccharides in the negative-ion mode frequently generates product anions of m/z 221. With glucose-containing disaccharides, dissociation of isolated m/z 221 product ions in a Paul trap yielded mass spectra that easily differentiated between both anomeric configurations and ring forms of the ions. These ions were shown to be glucosyl-glycolaldehydes through chemical synthesis of their standards. By labeling the reducing carbonyl oxygen of disaccharides with 18O to mass discriminate between monosaccharides, it was established that the m/z 221 ions are comprised solely of an intact nonreducing sugar with a two-carbon aglycon derived from the reducing sugar, regardless of the disaccharide linkage position. This enabled the anomeric configuration and ring form of the ion to be assigned and the location of the ion to the nonreducing side of a glycosidic linkage to be ascertained. Detailed studies of experimental factors necessary for reproducibility in a Paul trap demonstrated that the unique dissociation patterns that discriminate between the isomeric m/z 221 ions could be obtained from month-to-month in conjunction with an internal energy-input calibrant ion that ensures reproducible energy deposition into isolated m/z 221 ions. In addition, MS/MS fragmentation patterns of disaccharide m/z 341 anions in a Paul trap enabled linkage positions to be assigned, as has been previously reported with other types of mass spectrometers.  相似文献   

15.
We previously reported that human blood platelets are directly stimulated by endotoxic Lipid A via the protein kinase C pathway (Grabarek, J., Timmons, S., and Hawiger, J. (1988) J. Clin. Invest. 82, 964-971). To study the relationship between the molecular structure of Lipid A and its ability to activate human platelets, we used Lipid A homologs derived from Salmonella minnesota Re595 lipopolysaccharide. Preparations of Lipid A are heterogeneous in regard to the degree of substitution of fatty acids which result in multiple homologs. These were separated by thin-layer chromatography and characterized by fast atom bombardment spectroscopy and related techniques (Johnson R. S., Her, G.-R., Grabarek, J., Hawiger, J., and Reinhold, V. N. (1990) J. Biol. Chem. 265, 8108-8116). The homologs of monophosphoryl Lipid A (MLA) present in fractions TLC-8 (heptaacyl MLA ion, m/z 1953), TLC-7 (three hexaacyl species with predominant MLA ion m/z 1715), and TLC-6 (four pentaacyl homologs with predominant MLA ion, m/z 1505) induced secretion of [14C]serotonin and aggregation of platelets. Lipid A homologs in fractions TLC-5 (three tetraacyl MLA ions, m/z 1323, 1307, and 1279), TLC-4 (one major triacyl MLA ion, m/z 1097), TLC-3 (tetraacyl MLA ion, m/z 1278), TLC-2 (a diphosphoryl hexaacyl Lipid A ion, m/z 1795, and several ions of low abundance), and TLC-1 (two ions, m/z 1097 and 666) were not active in regard to human platelet aggregation and [14C]serotonin secretion. The most active homolog was heptaacyl MLA ion, m/z 1953, present in TLC-8, while homologs present in TLC-7 and TLC-6 were 5 and 10 times less active, respectively. Rapid phosphorylation of a human platelet protein of Mr 40,000-47,000 (P47), a substrate for protein kinase C activation, preceded secretion of serotonin when platelets were triggered by the most active heptaacyl MLA ion, m/z 1953. These events were time-dependent, with half-maximal response of phosphorylation of P47 at 30 s and [14C]serotonin secretion at 45 s. A marked difference in the degree of phosphorylation of P47 was observed with heptaacyl MLA homolog present in TLC-8 inducing complete phosphorylation (97%), whereas less acylated Lipid A homologs present in TLC-1 caused marginal phosphorylation (20%). These results indicate that the degree of acylation of monophosphoryl Lipid A determines its functional properties toward human platelets in regard to secretion of [14C]serotonin, aggregation, and activation of protein kinase C.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.

Objective

To monitor of type 2 diabetes more simply, conveniently and noninvasively, we are trying to identify the potential urinary peptides that associated with different stages of glucose control in type 2 diabetes mellitus.

Methods

Firstly, we collected urine samples from type 2 diabetic patients and normal controls. These type 2 diabetic patients were divided into two groups according to fasting plasma glucose (FPG) and hemoglobin A1c% (HbA1c), respectively. Magnetic beads based weak cation exchange chromatography (MB-WCX) was used to condense urinary peptides. The eluates were then analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Subsequently, ClinProt was used to profile and screen the polypeptide patterns based on different methods of grouping in diabetic patients and normal controls. Finally, the amino acid sequences of differentially expressed peptides were identified by nano-liquid chromatography-tandem mass spectrometry and the protein sources of the corresponding peptide were matched in IPI Human database.

Results

Proteomics analysis found two up-regulated peptide (m/z 2756.1 and m/z 3223.2) representations in diabetic subjects, and the two peptides increased with increases in the amount of glycosylated hemoglobin. Further, the parallelism between m/z 3223.2 and glycosylated hemoglobin was better than the parallelism between m/z 2756.1 and glycosylated hemoglobin. Area under the receiver operating characteristic of the two peptides was 0.722 and 0.661, respectively. The above-mentioned peptide m/z 2756.1 was further identified as fragment of fibrinogen alpha chain precursor and m/z 3223.2 was fragment of prothrombin precursor.

Conclusion

These results suggested the two urinary biomarkers enable monitor of type 2 diabetes patients with different stages of glucose control.  相似文献   

17.
We report on the quantitative determination of acetaminophen (paracetamol; NAPAP-d(0)) in human plasma and urine by GC-MS and GC-MS/MS in the electron-capture negative-ion chemical ionization (ECNICI) mode after derivatization with pentafluorobenzyl (PFB) bromide (PFB-Br). Commercially available tetradeuterated acetaminophen (NAPAP-d(4)) was used as the internal standard. NAPAP-d(0) and NAPAP-d(4) were extracted from 100-μL aliquots of plasma and urine with 300 μL ethyl acetate (EA) by vortexing (60s). After centrifugation the EA phase was collected, the solvent was removed under a stream of nitrogen gas, and the residue was reconstituted in acetonitrile (MeCN, 100 μL). PFB-Br (10 μL, 30 vol% in MeCN) and N,N-diisopropylethylamine (10 μL) were added and the mixture was incubated for 60 min at 30 °C. Then, solvents and reagents were removed under nitrogen and the residue was taken up with 1000 μL of toluene, from which 1-μL aliquots were injected in the splitless mode. GC-MS quantification was performed by selected-ion monitoring ions due to [M-PFB](-) and [M-PFB-H](-), m/z 150 and m/z 149 for NAPAP-d(0) and m/z 154 and m/z 153 for NAPAP-d(4), respectively. GC-MS/MS quantification was performed by selected-reaction monitoring the transition m/z 150 → m/z 107 and m/z 149 → m/z 134 for NAPAP-d(0) and m/z 154 → m/z 111 and m/z 153 → m/z 138 for NAPAP-d(4). The method was validated for human plasma (range, 0-130 μM NAPAP-d(0)) and urine (range, 0-1300 μM NAPAP-d(0)). Accuracy (recovery, %) ranged between 89 and 119%, and imprecision (RSD, %) was below 19% in these matrices and ranges. A close correlation (r>0.999) was found between the concentrations measured by GC-MS and GC-MS/MS. By this method, acetaminophen can be reliably quantified in small plasma and urine sample volumes (e.g., 10 μL). The analytical performance of the method makes it especially useful in pediatrics.  相似文献   

18.
A cyanobacterial bloom occurring in 1998 in lake Tres Pascualas (Concepción/Chile) was found to be dominated by Microcystis sp. The bloom contained both non-toxic (cyanopeptolin-type) and hepatotoxic (microcystin-type) peptides. Cyanopeptolin structure of the non-toxic peptides (called cyanopeptolin VW-1 and VW-2, respectively) was revealed by matrix assisted laser desorption ionization mass spectrometry (MALDI-TOF-MS) of whole cells, showing dominant molecular ions at m/z = 975 and m/z 995, respectively. On post source decay (PSD), both cyanopeptolins showed fragments deriving from Ahp-Phe-MTyr (3-amino-6-hydroxy-2-piperidone), the characteristic partial structure of cyanopeptolins. The amounts of each of the two cyanopeptolins could only roughly be estimated to be >0.1% of bloom material dry weight. In addition the blooms contained microcystins (20 microg/g bloom dry weight as determined by RP-HPLC, 13 microg/g according to ELISA determination). MALDI-TOF-MS revealed several structural variants of microcystin: MCYST-RR (microcystin with Arg and Arg, indicated by m/z 1,038 and confirmed by PSD revealing a m/z = 135 fragment deriving from the Adda side chain, MCYST-FR (microcystin with Phe and Arg, indicated by m/z = 1,015). The presence of [Asp(3)]-MCYST-LR (microcystin with Leu and Arg, Asp non-methylated, indicated by m/z 981), and [Asp(3)]-MCYST-YR (microcystin with Tyr and Arg, Asp non-methylated, indicated by m/z 1,031) were likely. The relative amounts of the peptides varied between February, April, and May. Whole cell extracts from the bloom material revealed specific enzyme inhibitory activities. The serin-proteases trypsin, plasmin, elastase were inhibited, assumable due to the cyanopeptolins found. Elastase and the cysteine-protease papain were not inhibited, inhibitions of protein kinase and glutathione S-transferase (GST) were low. Strong inhibition was observed with protein-phosphatase-1, likely due to the microcystins present in the samples.  相似文献   

19.
A validated gas chromatography (GC)-mass spectrometric (MS) method for the analysis of hydroxyproline in rat femur is reported. Hydroxyproline in bone hydrolysates was extracted with an anion exchange resin and the N(O)-tert-butyldimethylsilyl derivatives analyzed by GC-MS. The hydroxyproline concentration was estimated relative to pipecolic acid, 3,4-dehydroproline and n-tetracosane as internal standards. The mass-to-charge ratios (m/z) for the ions used for quantitation by single ion monitoring were 314 m/z for hydroxyproline, 198 m/z for pipecolic acid, 256 m/z for dehydroproline and 57 m/z for n-tetracosane. A coefficient of variation of 5.8% was achieved and the limit of detection was calculated to be 0.233 micromol/l bone hydrolysate.  相似文献   

20.
We determined cabergoline and L-dopa in human plasma using liquid chromatography-mass spectrometry with tandem mass spectrometry (LC-MS-MS). The deproteinized plasma samples with organic solvent or acid were analyzed directly by reversed-phase liquid chromatography. Using multiple reaction monitoring (MRM, product ions m/z 381 of m/z 452 for cabergoline and m/z 152 of m/z 198 for L-dopa) on LC-MS-MS with electrospray ionization (ESI), cabergoline and L-dopa in human plasma were determined. Calibration curves of the method showed a good linearity in the range 5-250 pg/ml for cabergoline and 1-200 ng/ml for L-dopa, respectively. The limit of determination was estimated to be approximately 2 pg/ml for cabergoline and approximately 0.1 ng/ml for L-dopa, respectively. The method was applied to the analysis of cabergoline and L-dopa in plasma samples from patients treated with these drugs. The precision of analysis showed coefficients of variation ranging from 3.8% to 10.5% at cabergoline concentration of 13.8-26.2 pg/ml and from 2.9% to 8.9% at an L-dopa concentration of 302.5-522.1 ng/ml in patient plasma. As a result, the procedure proved to be very suitable for routine analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号