首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Microglia account for approximately 12% of the total cellular population in the mammalian brain. While neurons and astrocytes are considered the major cell types of the nervous system, microglia play a significant role in normal brain physiology by monitoring tissue for debris and pathogens and maintaining homeostasis in the parenchyma via phagocytic activity 1,2. Microglia are activated during a number of injury and disease conditions, including neurodegenerative disease, traumatic brain injury, and nervous system infection 3. Under these activating conditions, microglia increase their phagocytic activity, undergo morpohological and proliferative change, and actively secrete reactive oxygen and nitrogen species, pro-inflammatory chemokines and cytokines, often activating a paracrine or autocrine loop 4-6. As these microglial responses contribute to disease pathogenesis in neurological conditions, research focused on microglia is warranted.Due to the cellular heterogeneity of the brain, it is technically difficult to obtain sufficient microglial sample material with high purity during in vivo experiments. Current research on the neuroprotective and neurotoxic functions of microglia require a routine technical method to consistently generate pure and healthy microglia with sufficient yield for study. We present, in text and video, a protocol to isolate pure primary microglia from mixed glia cultures for a variety of downstream applications. Briefly, this technique utilizes dissociated brain tissue from neonatal rat pups to produce mixed glial cell cultures. After the mixed glial cultures reach confluency, primary microglia are mechanically isolated from the culture by a brief duration of shaking. The microglia are then plated at high purity for experimental study.The principle and protocol of this methodology have been described in the literature 7,8. Additionally, alternate methodologies to isolate primary microglia are well described 9-12. Homogenized brain tissue may be separated by density gradient centrifugation to yield primary microglia 12. However, the centrifugation is of moderate length (45 min) and may cause cellular damage and activation, as well as, cause enriched microglia and other cellular populations. Another protocol has been utilized to isolate primary microglia in a variety of organisms by prolonged (16 hr) shaking while in culture 9-11. After shaking, the media supernatant is centrifuged to isolate microglia. This longer two-step isolation method may also perturb microglial function and activation. We chiefly utilize the following microglia isolation protocol in our laboratory for a number of reasons: (1) primary microglia simulate in vivo biology more faithfully than immortalized rodent microglia cell lines, (2) nominal mechanical disruption minimizes potential cellular dysfunction or activation, and (3) sufficient yield can be obtained without passage of the mixed glial cell cultures.It is important to note that this protocol uses brain tissue from neonatal rat pups to isolate microglia and that using older rats to isolate microglia can significantly impact the yield, activation status, and functional properties of isolated microglia. There is evidence that aging is linked with microglia dysfunction, increased neuroinflammation and neurodegenerative pathologies, so previous studies have used ex vivo adult microglia to better understand the role of microglia in neurodegenerative diseases where aging is important parameter. However, ex vivo microglia cannot be kept in culture for prolonged periods of time. Therefore, while this protocol extends the life of primary microglia in culture, it should be noted that the microglia behave differently from adult microglia and in vitro studies should be carefully considered when translated to an in vivo setting.  相似文献   

3.
Administration of tacrine (THA) for the treatment of Alzheimer's disease results in a reversible hepatotoxicity in 30–50% of patients, as indicated by an increase in transaminase levels. However, the intracellular mechanisms underlying such a toxicity have not yet been elucidated. In this study, we performed short-term and long-term in vitro treatments on primary human and rat hepatocyte cultures as well as on nonparenchymal rat liver epithelial cells (RLEC), known as CYP1A-deficient cells. Cell ultrastructure was analyzed under different conditions and the release of lactate dehydrogenase (LDH) was used to evaluate cytotoxicity. The effects of THA on protein synthesis, intermediary metabolism and reduced glutathione (GSH) level were also determined in rat hepatocytes. THA induced dose-dependent toxic effects in liver parenchymal and nonparenchymal cells, with human hepatocytes being less sensitive. This toxicity appeared to be unrelated to metabolism of THA since similar effects were observed in rat hepatocytes and RLEC, in which THA metabolism was found negligible. Ribosome aggregation appeared only at high concentrations (>1 mmol/L) and was not specific to hepatocytes. Therefore, the THA-induced decrease in protein synthesis observed at lower concentrations was likely not related to this alteration. ATP and glycogen levels as well as GSH content were reduced upon THA. However, while glycogen level decreased at THA doses similar to those inducing an increase in LDH release, the fall in ATP and GSH contents occurred at higher doses. Thus, glycogen level in hepatocytes appeared to be a more sensitive indicator of THA toxicity than were ATP and GSH levels. We also found that protein synthesis started to decrease at THA doses that were still ineffective on LDH release. This might suggest that the decrease in synthesis of one or several proteins upon THA treatment represents the early signal leading cells to death.  相似文献   

4.
Primary hepatocyte culture is a valuable tool that has been extensively used in basic research of liver function, disease, pathophysiology, pharmacology and other related subjects. The method based on two-step collagenase perfusion for isolation of intact hepatocytes was first introduced by Berry and Friend in 1969 1 and, since then, has undergone many modifications. The most commonly used technique was described by Seglenin 1976 2. Essentially, hepatocytes are dissociated from anesthetized adult rats by a non-recirculating collagenase perfusion through the portal vein. The isolated cells are then filtered through a 100 μm pore size mesh nylon filter, and cultured onto plates. After 4-hour culture, the medium is replaced with serum-containing or serum-free medium, e.g. HepatoZYME-SFM, for additional time to culture. These procedures require surgical and sterile culture steps that can be better demonstrated by video than by text. Here, we document the detailed steps for these procedures by both video and written protocol, which allow consistently in the generation of viable hepatocytes in large numbers.  相似文献   

5.
Due to the inherent difficulty and time involved with studying the myogenic program in vivo, primary culture systems derived from the resident adult stem cells of skeletal muscle, the myogenic precursor cells (MPCs), have proven indispensible to our understanding of mammalian skeletal muscle development and growth. Particularly among the basal taxa of Vertebrata, however, data are limited describing the molecular mechanisms controlling the self-renewal, proliferation, and differentiation of MPCs. Of particular interest are potential mechanisms that underlie the ability of basal vertebrates to undergo considerable postlarval skeletal myofiber hyperplasia (i.e. teleost fish) and full regeneration following appendage loss (i.e. urodele amphibians). Additionally, the use of cultured myoblasts could aid in the understanding of regeneration and the recapitulation of the myogenic program and the differences between them. To this end, we describe in detail a robust and efficient protocol (and variations therein) for isolating and maintaining MPCs and their progeny, myoblasts and immature myotubes, in cell culture as a platform for understanding the evolution of the myogenic program, beginning with the more basal vertebrates. Capitalizing on the model organism status of the zebrafish (Danio rerio), we report on the application of this protocol to small fishes of the cyprinid clade Danioninae. In tandem, this protocol can be utilized to realize a broader comparative approach by isolating MPCs from the Mexican axolotl (Ambystomamexicanum) and even laboratory rodents. This protocol is now widely used in studying myogenesis in several fish species, including rainbow trout, salmon, and sea bream1-4.  相似文献   

6.
Recent progress by versatile approaches supports the new hypothesis that multi-potent hematopoietic stein cells (HSCs) are directly formed from a rare population of endothelial cells in mid-gestation mouse embryos. This process is therefore known as the endothelial-to- hematopoietic transition (EHT). Nevertheless, there is no functional evidence that documents the HSC transition from purified endothelial cells. In this study, we developed an OP9-DLl-based co-culture system that was able to facilitate the HSC specification and/or expansion in vitro of mouse embryonic day 10.5 (El0.5) Tie2~ cells remarkably. Then, the immunophenotypically defined endothelial ceils were harvested by a combination of surface markers (Flkl+CD31 ~CD41 CD45 Ter119 ) from the caudal half of EI0.0-EI 1.0 mouse embryos. The transplantation of the endothelia/OP9-DL1 co-cultures led to long-term, high-level, multi-lineage, and multi-organ he- matopoietic reconstitution in the irradiated adult recipients. The induced HSC activity was initially observed at El0.5, and a significant increase was detected at El 1.0, which suggests a temporally specific regulation. Taken together, tbr the first time, we provide functional evidence showing the HSC potential of purified embryonic endothelial cells, which is indispensable for the emerging EHT concept. Moreover, the newly defined co-culture system will aid the exploration of the key molecules governing the HSC transition from embryonic and even postnatal endothelial cells, which has enormous significance in basic and translational research.  相似文献   

7.
Viral infections cause morbidity and mortality in allogeneic hematopoietic stem cell transplant (HSCT) recipients. We and others have successfully generated and infused T-cells specific for Epstein Barr virus (EBV), cytomegalovirus (CMV) and Adenovirus (Adv) using monocytes and EBV-transformed lymphoblastoid cell (EBV-LCL) gene-modified with an adenovirus vector as antigen presenting cells (APCs). As few as 2x105/kg trivirus-specific cytotoxic T lymphocytes (CTL) proliferated by several logs after infusion and appeared to prevent and treat even severe viral disease resistant to other available therapies. The broader implementation of this encouraging approach is limited by high production costs, complexity of manufacture and the prolonged time (4-6 weeks for EBV-LCL generation, and 4-8 weeks for CTL manufacture – total 10-14 weeks) for preparation. To overcome these limitations we have developed a new, GMP-compliant CTL production protocol. First, in place of adenovectors to stimulate T-cells we use dendritic cells (DCs) nucleofected with DNA plasmids encoding LMP2, EBNA1 and BZLF1 (EBV), Hexon and Penton (Adv), and pp65 and IE1 (CMV) as antigen-presenting cells. These APCs reactivate T cells specific for all the stimulating antigens. Second, culture of activated T-cells in the presence of IL-4 (1,000U/ml) and IL-7 (10ng/ml) increases and sustains the repertoire and frequency of specific T cells in our lines. Third, we have used a new, gas permeable culture device (G-Rex) that promotes the expansion and survival of large cell numbers after a single stimulation, thus removing the requirement for EBV-LCLs and reducing technician intervention. By implementing these changes we can now produce multispecific CTL targeting EBV, CMV, and Adv at a cost per 106 cells that is reduced by >90%, and in just 10 days rather than 10 weeks using an approach that may be extended to additional protective viral antigens. Our FDA-approved approach should be of value for prophylactic and treatment applications for high risk allogeneic HSCT recipients.  相似文献   

8.
Herein we present a protocol of reprogramming human adult fibroblasts into human induced pluripotent stem cells (hiPSC) using retroviral vectors encoding Oct3/4, Sox2, Klf4 and c-myc (OSKM) in the presence of sodium butyrate 1-3. We used this method to reprogram late passage (>p10) human adult fibroblasts derived from Friedreich''s ataxia patient (GM03665, Coriell Repository). The reprogramming approach includes highly efficient transduction protocol using repetitive centrifugation of fibroblasts in the presence of virus-containing media. The reprogrammed hiPSC colonies were identified using live immunostaining for Tra-1-81, a surface marker of pluripotent cells, separated from non-reprogrammed fibroblasts and manually passaged 4,5. These hiPSC were then transferred to Matrigel plates and grown in feeder-free conditions, directly from the reprogramming plate. Starting from the first passage, hiPSC colonies demonstrate characteristic hES-like morphology. Using this protocol more than 70% of selected colonies can be successfully expanded and established into cell lines. The established hiPSC lines displayed characteristic pluripotency markers including surface markers TRA-1-60 and SSEA-4, as well as nuclear markers Oct3/4, Sox2 and Nanog. The protocol presented here has been established and tested using adult fibroblasts obtained from Friedreich''s ataxia patients and control individuals 6, human newborn fibroblasts, as well as human keratinocytes.  相似文献   

9.
Adult rat and human spinal cord neural stem/progenitor cells (NSPCs) cultured in growth factor-enriched medium allows for the proliferation of multipotent, self-renewing, and expandable neural stem cells. In serum conditions, these multipotent NSPCs will differentiate, generating neurons, astrocytes, and oligodendrocytes. The harvested tissue is enzymatically dissociated in a papain-EDTA solution and then mechanically dissociated and separated through a discontinuous density gradient to yield a single cell suspension which is plated in neurobasal medium supplemented with epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and heparin. Adult rat spinal cord NSPCs are cultured as free-floating neurospheres and adult human spinal cord NSPCs are grown as adherent cultures. Under these conditions, adult spinal cord NSPCs proliferate, express markers of precursor cells, and can be continuously expanded upon passage. These cells can be studied in vitro in response to various stimuli, and exogenous factors may be used to promote lineage restriction to examine neural stem cell differentiation. Multipotent NSPCs or their progeny can also be transplanted into various animal models to assess regenerative repair.  相似文献   

10.
The need for osteocyte cultures is well known to the community of bone researchers; isolation of primary osteocytes is difficult and produces low cell numbers. Therefore, the most widely used cellular system is the osteocyte-like MLO-Y4 cell line.The method here described refers to the use of retinoic acid to generate a homogeneous population of ramified cells with morphological and molecular osteocyte features.After isolation of osteoblasts from mouse calvaria, all-trans retinoic acid (ATRA) is added to cell medium, and cell monitoring is conducted daily under an inverted microscope. First morphological changes are detectable after 2 days of treatment and differentiation is generally complete in 5 days, with progressive development of dendrites, loss of the ability to produce extracellular matrix, down-regulation of osteoblast markers and up-regulation of osteocyte-specific molecules.Daily cell monitoring is needed because of the inherent variability of primary cells, and the protocol can be adapted with minimal variation to cells obtained from different mouse strains and applied to transgenic models. The method is easy to perform and does not require special instrumentation, it is highly reproducible, and rapidly generates a mature osteocyte population in complete absence of extracellular matrix, allowing the use of these cells for unlimited biological applications.  相似文献   

11.
Human cells do not indefinitely proliferate. Upon external and/or intrinsic cues, cells might die or enter a stable cell cycle arrest called senescence. Several cellular mechanisms, such as telomere shortening and abnormal expression of mitogenic oncogenes, have been shown to cause senescence. Senescence is not restricted to normal cells; cancer cells have also been reported to senesce.Chemotherapeutical drugs have been shown to induce senescence in cancer cells. However, it remains controversial whether senescence prevents or promotes tumorigenesis. As it might eventually be patient-specific, a rapid and sensitive method to assess senescence in cancer cell will soon be required.To this end, the standard β-galactosidase assay, the currently used method, presents major drawbacks: it is time consuming and not sensitive. We propose here a flow cytometry-based assay to study senescence on live cells. This assay offers the advantage of being rapid, sensitive, and can be coupled to the immunolabeling of various cellular markers.  相似文献   

12.
Hepatic stellate cells (HSCs), also referred to as Ito cells, perisinusiodal cells and fat-storing cells, have numerous vital functions. They are the main extracellular matrix-producing cells within the liver and are involved in the storage of retinol. HSCs are also known to secrete a number of liver mitogens. Current isolation techniques are cumbersome and most require a pronase digestion step, which destroys any hepatocytes present. We present a simple method for isolation and culture of hepatic stellate cells from the normally discarded washings from a two-step collagenase hepatocyte isolation, which has shown a yield of more than 1.5 × 106 viable HSCs after 5 days in culture. The cells were positively identified as HSCs by staining for two intermediate filaments (desmin and GFAP) and observing their distinct morphology from other liver cell types. This efficient method allows rapid and consistent isolation of stellate cells to give a culture that may be passaged several times.  相似文献   

13.
采用氧化铝柱色谱法以95%乙醇-氯仿为洗脱剂分离纯化了肝源性磷脂酰乙醇胺(PE),并采用GF254硅胶板薄层色谱法以氯仿-甲醇-水(65:25:4,体积比)为展开剂检测PE.结果表明,以95%乙醇-氯仿顺序洗脱氧化铝色谱柱中的磷脂时,PE与磷脂酰胆碱(PC)可实现完全分离.采用四甲基偶氮唑蓝比色法(MTT法)测定了在不同时间点25 μmol/L PE对人肝癌SMMC-7721细胞增殖的影响,并与子宫颈癌细胞Hela、正常人肝细胞HL7702做比较,发现肝源性PE对肝癌细胞的生长具有明显的抑制作用,且能诱导其发生凋亡.  相似文献   

14.
Wnt signaling is implicated in the control of cell growth and differentiation during CNS development. These findings are based on studies of mouse and chick models. However, the action of Wnt signaling, at the cellular level, is poorly understood. In this study, we investigated the roles of Wnt-3a and Wnt-5a on differentiation and proliferation of postnatal neural progenitor cells (NPCs) in mice.NPCs were isolated from the subventricular zone (SVZ) of PN-1 and adult ICR mice. Plasmids containing active Wnt-3a or Wnt-5a were transfected to NPCs; their effects on the formation of neurospheres and differentiation into neuronal cells were then determined. Transfection of Wnt-3a and Wnt-5a plasmids promoted regeneration of neurospheres and differentiation into Map2-positive cells, and decreased differentiation into GFAP-positive cells. The conditioned media obtained from Wnt-3a or Wnt-5a transfected NPCs showed similar effects on differentiation of NPCs with cDNA transfection, although the magnitude of stimulatory effect was less than that by plasmid transfection. Wnt-3a and Wnt-5a transfection did not affect Brdu incorporation of neuronal or glial progenitors in differentiation media. Wnt-3a and Wnt-5a plasmid transfection and the treatment of Wnt-3a and Wnt-5a conditioned media increased $β −cateninlevelsinNPCs. Wnt−3ahadagreatereffecton β $-catenin levels than Wnt-5a. The PKC inhibitor completely blocked the Wnt-5a effect on neuronal differentiation in NPCs. These findings suggest that Wnt-3a and Wnt-5a each have distinct effects on the proliferation and differentiation of NPCs in postnatal mice.  相似文献   

15.
Gene targeting in embryonic stem (ES) cells followed by preparation of chimeric animals is the most effective method to study the function of a gene during development and differentiation. Here, we describe a cost effective and convenient method to produce chimeric animals. Cryopreserved 8–16 cell mouse embryos were aggregated with ES cells in microwell petridishes (Khillan & Bao, 1997) to obtain blastocysts. Also, freshly isolated morulas were aggregated with ES cells that were positive for the green florescent protein (GFP). After overnight culture, the blastocysts that exhibited GFP florescence were transferred to the pseudo-pregnant mothers to obtain chimeric animals. The animals displayed high degree of ES contribution and transmitted gene to their progeny after mating with the normal animals. The studies demonstrate that the aggregation with cryopreserved embryos followed by the pre-selection for a visual marker can be a high throughput and cost effective method to create chimeric animals from the gene targeted ES cells.  相似文献   

16.
Cadmium (Cd) is a known nephrotoxic element. In this study, the primary cultures of rat proximal tubular (rPT) cells were treated with low doses of cadmium acetate (2.5 and 5 μM) to investigate its cytotoxic mechanism. A progressive loss in cell viability, together with a significant increase in the number of apoptotic and necrotic cells, were seen in the experiment. Simultaneously, elevation of intracellular [Ca2+]i and reactive oxygen species (ROS) levels, significant depletion of mitochondrial membrane potential(Δ Ψ) and cellular glutathione (GSH), intracellular acidification, and inhibition of Na+, K+-ATPase and Ca2+-ATPase activities were revealed in a dose-dependent manner during the exposure, while the cellular death and the apoptosis could be markedly reversed by N-acetyl-l-cysteine (NAC). Also, the calcium overload and GSH depletion were significantly affected by NAC. In conclusion, exposure of rPT cells to low-dose cadmium led to cellular death, mediated by an apoptotic and a necrotic mechanism. The apoptotic death might be the chief mechanism, which may be mediated by oxidative stress. Also, a disorder of intracellular homeostasis induced by oxidative stress and mitochondrial dysfunction is a trigger of apoptosis in rPT cells.  相似文献   

17.
Previous studies have shown that isolation and primary culture of rat hepatocytes in a standard, chemically defined medium is associated with selective changes in microsomal function. These changes were found to be selectively sensitive to addition of hormones to the culture medium. The concentration of cytochrome P-450 declined dramatically during the first 24 hours of incubation. However, cytochrome P1-450, a form of the hemoprotein induced by polycyclic aromatic hydrocarbons, was resistant to this change. Cytochrome P1-450 levels selectively rose during the first ten hours in culture and, thereafter, declined at a less rapid rate than did the cytochrome P-450 in normal hepatocytes or in cells prepared from phenobarbital pretreated animals. Addition of dexamethasone to the medium at the time of cell plating partially prevented the fall of cytochrome P-450 and of 14C-heme in microsomes prepared from hepatocytes derived from rats given 514[C]-δ-aminolevulinic acid. This suggests that the steroid decreases degradation of the hemoprotein. As compared to the loss of cytochrome P-450 in cultures of normal hepatocytes, the hemoprotein fell to lower levels in hepatocytes prepared from regenerated liver four days after partial hepatectomy. This result may be related to the accelerated formation of the monolayer in the cultures of regenerated hepatocytes. Both sn-glycerol-3-phosphate acyltransferase activity and glycerol kinase activity declined in the first 24 hours of culture. The fall in the latter enzyme was partially prevented by addition of estradiol. Collagen prolyl hydroxylase, a newly discovered microsomal constituent of the hepatocyte, rose slightly during the first 24 hours in culture. This change was augmented threefold by addition of insulin to the medium. We conclude that the present hepatocyte culture system with its attendant changes in functional phenotype may be useful in better defining the role of hormones in modulating metabolic processes in the liver.  相似文献   

18.
Liver sinusoidal endothelial cells are the gateway to the liver, their transcellular fenestrations allow the unimpeded transfer of small and dissolved substances from the blood into the liver parenchyma for metabolism and processing. Fenestrations are dynamic structures - both their size and/or number can be altered in response to various physiological states, drugs, and disease, making them an important target for modulation. An understanding of how LSEC morphology is influenced by various disease, toxic, and physiological states and how these changes impact on liver function requires accurate measurement of the size and number of fenestrations. In this paper, we describe scanning electron microscopy fixation and processing techniques used in our laboratory to ensure reproducible specimen preparation and accurate interpretation. The methods include perfusion fixation, secondary fixation and dehydration, preparation for the scanning electron microscope and analysis. Finally, we provide a step by step method for standardized image analysis which will benefit all researchers in the field.  相似文献   

19.
Primary cultures of mouse embryonic neuronal or glial cells from the cerebral cortex, striatum, and mesencephalon were used to identify and determine the cellular localization of somatostatin receptors coupled to an adenylate cyclase. Somatostatin inhibited basal adenylate cyclase activity on neuronal but not on glial crude membranes in the three structures examined. The somatostatin-inhibitory effect on neuronal crude membranes was still observed in the presence of (-)-isoproterenol, 3,4-dihydroxyphenylethylamine (dopamine, DA), or 5-hydroxytryptamine (5-HT, serotonin) used at a concentration (10(-5) M) inducing maximal adenylate cyclase activation. In addition, in most cases biogenic amines modified the pattern of the somatostatin-inhibitory effect, triggering either an increase in the peptide apparent affinity for its receptors or an increase in the maximal reduction of adenylate cyclase activity or both. However, 5-HT did not modify the somatostatin-inhibitory response on striatal and cortical neuronal crude membranes. The changes in somatostatin-inhibitory responses were interpreted as a colocalization of the amine and the peptide receptors on subtypes of neuronal cell populations. Finally, somatostatin was shown to inhibit adenylate cyclase activity following its activation by (-)-isoproterenol on glial crude membranes of the striatum and the mesencephalon but not on those of the cerebral cortex.  相似文献   

20.
In order to evaluate the mechanisms leading to neuropathology in Mucopolysaccharidosis type IIIA (MPS-IIIA, Sanfilippo syndrome), we have harvested and cultured primary neural cells isolated from the cerebellum of newborn and adult MPS-IIIA and unaffected mice. Cell viability and plating efficiency were comparable for brain tissue obtained from either newborn or adult MPS-IIIA and unaffected mice. Cultures (newborn and adult) comprised a mixed brain cell population including astrocytes, oligodendrocytes, and neurons. Newborn MPS-IIIA cells contained inclusions and vacuoles consistent with the pathology present in affected brain tissue. Newborn and adult MPS-IIIA brain cells had approximately 5–7% of the sulfamidase activity present in primary neural cells cultured from unaffected newborn and adult mice. In addition, high levels of glucosamine-N-sulfate[α-1,4]hexuronic acid, a heparan sulfate-derived disaccharide, were detected in both newborn and adult MPS-IIIA brain cells. These results suggest that the primary MPS-IIIA brain cells exhibit characteristics of MPS-IIIA phenotype at the histopathological and biochemical level in culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号