首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
By adapting a laser scanning microscope with a titanium sapphire femtosecond pulsed laser and transmission optics, we are able to produce live cell images based on the nonlinear optical phenomenon of second harmonic generation (SHG). Second harmonic imaging (SHIM) is an ideal method for probing membranes of living cells because it offers the high resolution of nonlinear optical microscopy with the potential for near-total avoidance of photobleaching and phototoxicity. The technique has been implemented on three cell lines labeled with membrane-staining dyes that have large nonlinear optical coefficients. The images can be obtained within physiologically relevant time scales. Both achiral and chiral dyes were used to compare image formation for the case of single- and double-leaflet staining, and it was found that chirality plays a significant role in the mechanism of contrast generation. It is also shown that SHIM is highly sensitive to membrane potential, with a depolarization of 25 mV resulting in an approximately twofold loss of signal intensity.  相似文献   

2.
Retrograde labeling of neurons is a standard anatomical method1,2 that has also been used to load calcium and voltage-sensitive dyes into neurons3-6. Generally, the dyes are applied as solid crystals or by local pressure injection using glass pipettes. However, this can result in dilution of the dye and reduced labeling intensity, particularly when several hours are required for dye diffusion. Here we demonstrate a simple and low-cost technique for introducing fluorescent and ion-sensitive dyes into neurons using a polyethylene suction pipette filled with the dye solution. This method offers a reliable way for maintaining a high concentration of the dye in contact with axons throughout the loading procedure.  相似文献   

3.
Over the last years, there is accumulating evidence that acidic organelles can accumulate and release Ca2+ upon cell activation. Hence, reliable recording of Ca2+ dynamics in these compartments is essential for understanding the physiopathological aspects of acidic organelles. Genetically encoded Ca2+ indicators (GECIs) are valuable tools to monitor Ca2+ in specific locations, although their use in acidic compartments is challenging due to the pH sensitivity of most available fluorescent GECIs. By contrast, bioluminescent GECIs have a combination of features (marginal pH sensitivity, low background, no phototoxicity, no photobleaching, high dynamic range and tunable affinity) that render them advantageous to achieve an enhanced signal-to-noise ratio in acidic compartments. This article reviews the use of bioluminescent aequorin-based GECIs targeted to acidic compartments. A need for more measurements in highly acidic compartments is identified.  相似文献   

4.
Visualizing mitochondria in living Dictyostelium discoideum cells using fluorescent dyes is often problematic due to variability in staining, metabolism of the dyes, and unknown potential effects of the dyes on mitochondrial function. We show that fluorescent labelling of mitochondria, using an N-terminal mitochondrial localization sequence derived from the D. discoideum protein GcvH1 (glycine cleavage system H1) attached to a red fluorescent protein enables clear mitochondrial imaging. We also show that this labelling has no effect upon mitochondria load or respiratory function.  相似文献   

5.
6.
Preparation, characterization, photostability and polarity studies of novel Schiff base dyes using spectroscopic methods were achieved. The Schiff base dyes were prepared by the reaction of salicylalde-hyde/2-hydroxy-l-naphthaldehyde with aminophenazone under microwave irradiation. The spectroscopic (FT-IR, 1H NMR, 13C NMR, Mass) studies and elemental analyses were in good agreement with chemical structure of synthesized compounds. In addition, UV-Vis and fluorescence spectroscopic experiments showed that these dyes are good absorbent and fluorescent. Based on the photostability study of these dyes, minimal to no loss in fluorescence intensities of 4-[(2-hydroxy-benzylidene)-amino]1,5-dimemyl-2-phe-nyl-1,2-dihydro-pyrazol-3-one (D1) (6.14%) and 4-[(2-hydroxy-naphthalen-l-ylmethylene)-amino]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one (D2) (2.95%) was observed with an increase in the exposure time using time-based fluorescence steady-state experiments. These studies also inferred that these Schiff base dyes have a high photostability against photobleaching. In addition, Dye 2 is found to be more sensitive than Dye 1 to the polarity of the microenvironment provided by different solvents based on the results of fluorescence polarity studies.  相似文献   

7.
Observations on naturally occurring gaps in the axonal neurofilament array of cultured neurons have demonstrated that neurofilament polymers move along axons in a rapid, intermittent, and highly asynchronous manner. In contrast, studies on axonal neurofilaments using laser photobleaching have not detected movement. Here, we describe a modified photobleaching strategy that does permit the direct observation of neurofilament movement. Axons of cultured neurons expressing GFP-tagged neurofilament protein were bleached by excitation with the mercury arc lamp of a conventional epifluorescence microscope for 12-60 s. The length of the bleached region ranged from 10 to 60 microm. By bleaching thin axons, which have relatively few neurofilaments, we were able to reduce the fluorescent intensity enough to allow the detection of neurofilaments that moved in from the surrounding unbleached regions. Time-lapse imaging at short intervals revealed rapid, intermittent, and highly asynchronous movement of fluorescent filaments through the bleached regions at peak rates of up to 2.8 microm/s. The kinetics of movement were very similar to our previous observations on neurofilaments moving through naturally occurring gaps, which indicates that the movement was not impaired by the photobleaching process. These results demonstrate that fluorescence photobleaching can be used to study the slow axonal transport of cytoskeletal polymers, but only if the experimental strategy is designed to ensure that rapid asynchronous movements can be detected. This may explain the failure of previous photobleaching studies to reveal the movement of neurofilament proteins and other cytoskeletal proteins in axons.  相似文献   

8.
Multiphoton microscopy of intrinsic fluorescence and second harmonic generation (SHG) of whole mouse organs is made possible by optically clearing the organ before imaging.1,2 However, for organs that contain fluorescent proteins such as GFP and YFP, optical clearing protocols that use methanol dehydration and clear using benzyl alcohol:benzyl benzoate (BABB) while unprotected from light3 do not preserve the fluorescent signal. The protocol presented here is a novel way in which to perform whole organ optical clearing on mouse brain while preserving the fluorescence signal of YFP expressed in neurons. Altering the optical clearing protocol such that the organ is dehydrated using an ethanol graded series has been found to reduce the damage to the fluorescent proteins and preserve their fluorescent signal for multiphoton imaging.4 Using an optimized method of optical clearing with ethanol-based dehydration and clearing by BABB while shielded from light, we show high-resolution multiphoton images of yellow fluorescent protein (YFP) expression in the neurons of a mouse brain more than 2 mm beneath the tissue surface.  相似文献   

9.
KillerRed is the only known fluorescent protein that demonstrates notable phototoxicity, exceeding that of the other green and red fluorescent proteins by at least 1,000-fold. KillerRed could serve as an instrument to inactivate target proteins or to kill cell populations in photodynamic therapy. However, the nature of KillerRed phototoxicity has remained unclear, impeding the development of more phototoxic variants. Here we present the results of a high resolution crystallographic study of KillerRed in the active fluorescent and in the photobleached non-fluorescent states. A unique and striking feature of the structure is a water-filled channel reaching the chromophore area from the end cap of the β-barrel that is probably one of the key structural features responsible for phototoxicity. A study of the structure-function relationship of KillerRed, supported by structure-based, site-directed mutagenesis, has also revealed the key residues most likely responsible for the phototoxic effect. In particular, Glu68 and Ser119, located adjacent to the chromophore, have been assigned as the primary trigger of the reaction chain.  相似文献   

10.
G protein-gated inward rectifier K+ (GIRK) channels function as cellular mediators of a wide range of hormones and neurotransmitters and are expressed in the brain, heart, skeletal muscle and endocrine tissue1,2. GIRK channels become activated following the binding of ligands (neurotransmitters, hormones, drugs, etc.) to their plasma membrane-bound, G protein-coupled receptors (GPCRs). This binding causes the stimulation of G proteins (Gi and Go) which subsequently bind to and activate the GIRK channel. Once opened the GIRK channel allows the movement of K+ out of the cell causing the resting membrane potential to become more negative. As a consequence, GIRK channel activation in neurons decreases spontaneous action potential formation and inhibits the release of excitatory neurotransmitters. In the heart, activation of the GIRK channel inhibits pacemaker activity thereby slowing the heart rate.GIRK channels represent novel targets for the development of new therapeutic agents for the treatment neuropathic pain, drug addiction, cardiac arrhythmias and other disorders3. However, the pharmacology of these channels remains largely unexplored. Although a number of drugs including anti-arrhythmic agents, antipsychotic drugs and antidepressants block the GIRK channel, this inhibition is not selective and occurs at relatively high drug concentrations3.Here, we describe a real-time screening assay for identifying new modulators of GIRK channels. In this assay, neuronal AtT20 cells, expressing GIRK channels, are loaded with membrane potential-sensitive fluorescent dyes such as bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC4(3)] or HLB 021-152 (Figure 1). The dye molecules become strongly fluorescent following uptake into the cells (Figure 1). Treatment of the cells with GPCR ligands stimulates the GIRK channels to open. The resulting K+ efflux out of the cell causes the membrane potential to become more negative and the fluorescent signal to decrease (Figure 1). Thus, drugs that modulate K+ efflux through the GIRK channel can be assayed using a fluorescent plate reader. Unlike other ion channel screening assays, such atomic absorption spectrometry4 or radiotracer analysis5, the GIRK channel fluorescent assay provides a fast, real-time and inexpensive screening procedure.  相似文献   

11.
ObjectivesDeregulation of axonal transport in neurons is emerging as the major cause of many neurodegenerative diseases in human, such as Charcot-Marie-Tooth (CMT) neuropathy. However, little is known about how mitochondria move in vivo and whether cell culture systems truly represent what happens in living animals. Here we describe the generation of a new zebrafish transgenic line that specifically allows to study mitochondrial dynamics in motor neurons and its application to analyse mitochondrial movement in zebrafish models expressing CMT2A causing mutations.MethodsThe Tol2 transposon system was used to generate a transgenic zebrafish line expressing the photoconvertible fluorescent protein Kaede in mitochondria of motor neurons. Mitochondrial shape and movement were monitored by time-lapse confocal live imaging and measured by kymograph analysis. The effects of two well-known CMT causing mutations, L76P and R94Q substitutions in MFN2, were then investigated with the same methods.ResultsWe generated the transgenic zebrafish Tg(hb9:MTS-Kaede) line with genetically labelled mitochondria in motor neurons. Kaede protein was correctly and stably targeted to mitochondrial matrix while retaining its photoconvertibility, thus qualifying this model for in vivo studies. Expression of the L76P and R94Q mutations reduced mitochondrial movement in axons and altered mitochondrial distribution in distinct ways.Conclusions and general significanceThese findings confirm previously published data obtained in cell cultures and strengthen the hypothesis of different mechanism of action of the two MFN2 mutations. Considering the number of neurodegenerative diseases associated to mitochondrial dynamics, the Tg(hb9:MTS-Kaede) zebrafish line is a promising model to study in vivo alterations of mitochondrial transport underlying human diseases.  相似文献   

12.
Photobleaching of green fluorescent protein (GFP) is a widely used approach for tracking the movement of subcellular structures and intracellular proteins. Although photobleaching is a powerful technique, it does not allow direct tracking of an object's movement and velocity within a living cell. Direct tracking becomes possible only with the introduction of a photoactivated fluorescent marker. A number of previous studies have reported optically induced changes in the emission spectra of fluorescent proteins. However, the ideal photoactivated fluorescent marker should be a nonfluorescent tag capable of "switching on" (i.e., becoming fluorescent) in response to irradiation by light of a particular wavelength, intensity, and duration. In this report, we generated a mutant of Anemonia sulcata chromoprotein asCP. The mutant protein is capable of unique irreversible photoconversion from the nonfluorescent to a stable bright-red fluorescent form ("kindling"). This "kindling fluorescent protein" (KFP1) can be used for precise in vivo photolabeling to track the movements of cells, organelles, and proteins. We used KFP1 for in vivo cell labeling in mRNA microinjection assays to monitor Xenopus laevis embryo development and to track mitochondrial movement in mammalian cells.  相似文献   

13.
Membrane proteins such as receptors and ion channels undergo active trafficking in neurons, which are highly polarised and morphologically complex. This directed trafficking is of fundamental importance to deliver, maintain or remove synaptic proteins.Super-ecliptic pHluorin (SEP) is a pH-sensitive derivative of eGFP that has been extensively used for live cell imaging of plasma membrane proteins1-2. At low pH, protonation of SEP decreases photon absorption and eliminates fluorescence emission. As most intracellular trafficking events occur in compartments with low pH, where SEP fluorescence is eclipsed, the fluorescence signal from SEP-tagged proteins is predominantly from the plasma membrane where the SEP is exposed to a neutral pH extracellular environment. When illuminated at high intensity SEP, like every fluorescent dye, is irreversibly photodamaged (photobleached)3-5. Importantly, because low pH quenches photon absorption, only surface expressed SEP can be photobleached whereas intracellular SEP is unaffected by the high intensity illumination6-10. FRAP (fluorescence recovery after photobleaching) of SEP-tagged proteins is a convenient and powerful technique for assessing protein dynamics at the plasma membrane. When fluorescently tagged proteins are photobleached in a region of interest (ROI) the recovery in fluorescence occurs due to the movement of unbleached SEP-tagged proteins into the bleached region. This can occur via lateral diffusion and/or from exocytosis of non-photobleached receptors supplied either by de novo synthesis or recycling (see Fig. 1). The fraction of immobile and mobile protein can be determined and the mobility and kinetics of the diffusible fraction can be interrogated under basal and stimulated conditions such as agonist application or neuronal activation stimuli such as NMDA or KCl application8,10. We describe photobleaching techniques designed to selectively visualize the recovery of fluorescence attributable to exocytosis. Briefly, an ROI is photobleached once as with standard FRAP protocols, followed, after a brief recovery, by repetitive bleaching of the flanking regions. This ''FRAP-FLIP'' protocol, developed in our lab, has been used to characterize AMPA receptor trafficking at dendritic spines10, and is applicable to a wide range of trafficking studies to evaluate the intracellular trafficking and exocytosis.  相似文献   

14.
Fluorescence microscopy of living cells enables visualization of the dynamics and interactions of intracellular molecules. However, fluorescence live-cell imaging is limited by photobleaching and phototoxicity induced by the excitation light. Here we describe controlled light-exposure microscopy (CLEM), a simple imaging approach that reduces photobleaching and phototoxicity two- to tenfold, depending on the fluorophore distribution in the object. By spatially controlling the light-exposure time, CLEM reduces the excitation-light dose without compromising image quality. We show that CLEM reduces photobleaching sevenfold in tobacco plant cells expressing microtubule-associated GFP-MAP4 and reduces production of reactive oxygen species eightfold and prolongs cell survival sixfold in HeLa cells expressing chromatin-associated H2B-GFP. In addition, CLEM increases the dynamic range of the fluorescence intensity at least twofold.  相似文献   

15.
Fluorescent proteins and dyes are essential tools for the study of protein trafficking, localization and function in cells. While fluorescent proteins such as green fluorescence protein (GFP) have been extensively used as fusion partners to proteins to track the properties of a protein of interest1, recent developments with smaller tags enable new functionalities of proteins to be examined in cells such as conformational change and protein-association 2, 3. One small tag system involves a tetracysteine motif (CCXXCC) genetically inserted into a target protein, which binds to biarsenical dyes, ReAsH (red fluorescent) and FlAsH (green fluorescent), with high specificity even in live cells 2. The TC/biarsenical dye system offers far less steric constraints to the host protein than fluorescent proteins which has enabled several new approaches to measure conformational change and protein-protein interactions 4-7. We recently developed a novel application of TC tags as sensors of oligomerization in cells expressing mutant huntingtin, which when mutated aggregates in neurons in Huntington disease 7. Huntingtin was tagged with two fluorescent dyes, one a fluorescent protein to track protein location, and the second a TC tag which only binds biarsenical dyes in monomers. Hence, changes in colocalization between protein and biarsenical dye reactivity enabled submicroscopic oligomer content to be spatially mapped within cells. Here, we describe how to label TC-tagged proteins fused to a fluorescent protein (Cherry, GFP or CFP) with FlAsH or ReAsH in live mammalian cells and how to quantify the two color fluorescence (Cherry/FlAsH, CFP/FlAsH or GFP/ReAsH combinations).Download video file.(77M, mov)  相似文献   

16.
Evidence accumulating during almost 50 years suggests Na+, K+-ATPase dysfunction in bipolar disorder, a disease treatable with chronic administration of lithium salts, carbamazepine or valproic acid. Three Na+, K+-ATPase α subunits (α1–3) and two β subunits (β1 and β2) are expressed in brain together with the auxiliary protein FXYD7. FXYD7 decreases K+ affinity, and thus contributes to stimulation of the enzyme at elevated extracellular K+ concentrations. Na+, K+-ATPase subtype and FXYD7 genes were determined by RT-PCR in mice co-expressing one fluorescent signal with an astrocytic marker or a different fluorescent signal with a neuronal marker and treated for 14 days with carbamazepine. Following fluorescence-activated cell sorting of neurons and astrocytes it was shown that α2 Expression was upregulated in astrocytes and neurons and α1 selectively in neurons, but α3 was unchanged. β1 was upregulated in astrocytes, but not in neurons. β2 was unaffected in astrocytes and absent in neurons. FXYD7 was downregulated specifically in neurons. According to cited literature data these changes should facilitate K+ uptake in neurons, without compromising preferential uptake in astrocytes at increased extracellular K+ concentrations. This process seems to be important for K+ homeostasis of the cellular level of the brain (Xu et al. Neurochem Res E-pub Dec. 12, 2012).  相似文献   

17.
Observing and characterizing dynamic cellular processes can yield important information about cellular activity that cannot be gained from static images. Vital fluorescent probes, particularly green fluorescent protein (GFP) have revolutionized cell biology stemming from the ability to label specific intracellular compartments and cellular structures. For example, the live imaging of GFP (and its spectral variants) chimeras have allowed for a dynamic analysis of the cytoskeleton, organelle transport, and membrane dynamics in a multitude of organisms and cell types [1-3]. Although live imaging has become prevalent, this approach still poses many technical challenges, particularly in primary cultured neurons. One challenge is the expression of GFP-tagged proteins in post-mitotic neurons; the other is the ability to capture fluorescent images while minimizing phototoxicity, photobleaching, and maintaining general cell health. Here we provide a protocol that describes a lipid-based transfection method that yields a relatively low transfection rate (~0.5%), however is ideal for the imaging of fully polarized neurons. A low transfection rate is essential so that single axons and dendrites can be characterized as to their orientation to the cell body to confirm directionality of transport, i.e., anterograde v. retrograde. Our approach to imaging GFP expressing neurons relies on a standard wide-field fluorescent microscope outfitted with a CCD camera, image capture software, and a heated imaging chamber. We have imaged a wide variety of organelles or structures, for example, dense-core vesicles, mitochondria, growth cones, and actin without any special optics or excitation requirements other than a fluorescent light source. Additionally, spectrally-distinct, fluorescently labeled proteins, e.g., GFP and dsRed-tagged proteins, can be visualized near simultaneously to characterize co-transport or other coordinated cellular events. The imaging approach described here is flexible for a variety of imaging applications and can be adopted by a laboratory for relatively little cost provided a microscope is available.  相似文献   

18.
19.
We assessed the phototoxicity of a series of xanthene derivatives against E. coli, S. aureus, and S. cerevisiae, measured the physicochemical properties of the photosensitizers, and found the relationship between them. Without illumination, the dyes tested showed almost the same level of inherent toxicity to the same organism, which showed the inherent toxicity of dyes was primarily dependent on the structure of parent molecule. Upon illumination, the photosensitizers showed obvious phototoxicity to all organisms. The dyes showed stronger phototoxicity to Gram-positive bacteria. With the increasing number of halogen substituents, the singlet oxygen yields increased and the phototoxic activity increased too. There was no obvious correlation between relative lipophilicity and activity in the current study. Our results showed xanthenes had the potential to act as alternatives to conventional antimicrobial compounds and also could be used for the decontamination of microbially polluted waters.  相似文献   

20.
Hybrid voltage sensors (hVoS) probe membrane potential by coupling the fluorescence of membrane-anchored proteins to the movement of a membrane-embedded hydrophobic anion dipicrylamine. Fluorescence resonance energy transfer between these two components transduces voltage changes into fluorescence changes, providing a signal for imaging electrical activity in genetically targeted cells. To improve hVoS signals, we systematically varied the optical properties, membrane targeting motifs, and linkages of fluorescent proteins to optimize the normalized fluorescence change (ΔF/F) and signal/noise ratio. The best results were obtained with cerulean fluorescent protein tagged N-terminally with a GAP43 motif and C-terminally with a truncated h-ras motif. With 100 mV steps in PC12 cells, this probe produced ΔF/F = 26% (4 μM dipicrylamine), which was threefold greater than that obtained with the original farnesylated EGFP construct. We also obtained a fivefold greater signal/noise ratio, which was 70% of a theoretical optimum. We designate this GAP43-CerFP-t-h-ras construct as hVoS 2.0. With the aid of a theoretical analysis, we estimated that hVoS 2.0 places its fluorophore ∼40 Å from the bilayer midplane. hVoS 2.0 performed well in cultured hippocampal neurons, where single action potentials produced clear fluorescence changes in a single trial. This improved probe should help investigators image voltage in genetically targeted neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号