首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In filamentous fungi, early endosomes are continuously trafficked to, and from, the growing hyphal tip by microtubule‐based motor proteins, serving as platforms for the long‐distance transport of diverse cargos including mRNA, signaling molecules, and other organelles which hitchhike on them. While the cellular machinery for early endosome motility in filamentous fungi is fairly well characterized, the broader physiological significance of this process remains less well understood. We set out to determine the importance of long‐distance early endosome trafficking in Aspergillus fumigatus, an opportunistic human pathogenic fungus that can cause devastating pulmonary infections in immunocompromised individuals. We first characterized normal early endosome motile behavior in A. fumigatus, then generated a mutant in which early endosome motility is severely perturbed through targeted deletion of the gene encoding for FtsA, one of a complex of proteins that links early endosomes to their motor proteins. Using a microfluidics‐based approach we show that contact‐induced hyphal branching behaviors are impaired in ΔftsA mutants, but that FtsA‐mediated early endosome motility is dispensable for virulence in an invertebrate infection model. Overall, our study provides new insight into early endosome motility in an important human pathogenic fungus.  相似文献   

4.
5.
6.
Macrophages and neutrophils kill the airborne fungal pathogen Aspergillus fumigatus. The dependency of this killing process on reactive oxygen intermediates (ROI) has been strongly suggested. Therefore, we investigated the enzymatic ROI detoxifying system by proteome analysis of A. fumigatus challenged by H(2)O(2). Since many of the identified proteins and genes are apparently regulated by a putative Saccharomyces cerevisiae Yap1 homolog, the corresponding gene of A. fumigatus was identified and designated Afyap1. Nuclear localization of a functional AfYap1-eGFP fusion was stress dependent. Deletion of the Afyap1 gene led to drastically increased sensitivity of the deletion mutant against H(2)O(2) and menadione, but not against diamide and NO radicals. Proteome analysis of the DeltaAfyap1 mutant strain challenged with 2 mM H(2)O(2) indicated that 29 proteins are controlled directly or indirectly by AfYap1, including catalase 2. Despite its importance for defense against reactive agents, the Afyap1 deletion mutant did not show attenuated virulence in a murine model of Aspergillus infection. These data challenge the hypothesis that ROI such as superoxide anions and peroxides play a direct role in killing of A. fumigatus in an immunocompromised host. This conclusion was further supported by the finding that killing of A. fumigatus wild-type and DeltaAfyap1 mutant germlings by human neutrophilic granulocytes worked equally well irrespective of whether the ROI scavenger glutathione or an NADPH-oxidase inhibitor was added to the cells.  相似文献   

7.
Li H  Zhou H  Luo Y  Ouyang H  Hu H  Jin C 《Molecular microbiology》2007,64(4):1014-1027
In yeast, glycosylphosphatidylinositol (GPI) is essential for viability and plays an important role in biosynthesis and organization of cell wall. Initiation of the GPI anchor biosynthesis is catalysed by the GPI-N-acetylglucosaminyltransferase complex (GPI-GnT). The GPI3 (SPT14) gene is thought to encode the catalytic subunit of GPI-GnT complex. In contrast to Saccharomyces cerevisiae, little is known about the GPI biosynthesis in filamentous fungi. In this study, the afpig-a gene was identified as the homologue of the GPI3/pig-A gene in Aspergillus fumigatus, an opportunistic fungal pathogen. By replacement of the afpig-a gene with a pyrG gene, we obtained the null mutants. Although the Deltaafpig-a mutant exhibited a significant increased cell lysis instead of temperature-sensitive or conditional lethal phenotype associated to the GPI3 mutant of yeast, they could survive at temperatures from 30 degrees C to 50 degrees C. The analysis of the mutants showed that a completely blocking of the GPI anchor synthesis in A. fumigatus led to cell wall defect, abnormal hyphal growth, rapid conidial germination and aberrant conidiation. In vivo assays revealed that the mutant exhibited a reduced virulence in immunocompromised mice. The GPI anchor was not essential for viability, but required for the cell wall integrity, morphogenesis and virulence in A. fumigatus.  相似文献   

8.
9.
Aspergillus fumigatus is a fungal pathogen that is capable of adapting to different host niches and to avoid host defenses. An enhanced understanding of how, and which, A. fumigatus signal transduction pathways are engaged in the regulation of these processes is essential for the development of improved disease control strategies. Protein phosphatases are central to numerous signal transduction pathways. To comprehend the functions of protein phosphatases in A. fumigatus, 32 phosphatase catalytic subunit encoding genes were identified. We have recognized PtcB as one of the phosphatases involved in the high osmolarity glycerol response (HOG) pathway. The ΔptcB mutant has both increased phosphorylation of the p38 MAPK (SakA) and expression of osmo‐dependent genes. The ΔptcB strain was more sensitive to cell wall damaging agents, had increased chitin and β‐1,3‐glucan, and impaired biofilm formation. The ΔptcB strain was avirulent in a murine model of invasive pulmonary aspergillosis. These results stress the importance of the HOG pathway in the regulation of pathogenicity determinants and virulence in A. fumigatus.  相似文献   

10.
Aspergillus fumigatus causes a wide range of diseases that include mycotoxicosis, allergic reactions and systemic diseases (invasive aspergillosis) with high mortality rates. Pathogenicity depends on immune status of patients and fungal strain. There is no unique essential virulence factor for development of this fungus in the patient and its virulence appears to be under polygenetic control. The group of molecules and genes associated with the virulence of this fungus includes many cell wall components, such as beta-(1-3)-glucan, galactomannan, galactomannanproteins (Afmp1 and Afmp2), and the chitin synthetases (Chs; chsE and chsG), as well as others. Some genes and molecules have been implicated in evasion from the immune response, such as the rodlets layer (rodA/hyp1 gene) and the conidial melanin-DHN (pksP/alb1 gene). The detoxifying systems for Reactive Oxygen Species (ROS) by catalases (Cat1p and Cat2p) and superoxide dismutases (MnSOD and Cu, ZnSOD), had also been pointed out as essential for virulence. In addition, this fungus produces toxins (14 kDa diffusible substance from conidia, fumigaclavin C, aurasperon C, gliotoxin, helvolic acid, fumagilin, Asp-hemolysin, and ribotoxin Asp fI/mitogilin F/restrictocin), allergens (Asp f1 to Asp f23), and enzymatic proteins as alkaline serin proteases (Alp and Alp2), metalloproteases (Mep), aspartic proteases (Pep and Pep2), dipeptidyl-peptidases (DppIV and DppV), phospholipase C and phospholipase B (Plb1 and Plb2). These toxic substances and enzymes seems to be additive and/or synergistic, decreasing the survival rates of the infected animals due to their direct action on cells or supporting microbial invasion during infection. Adaptation ability to different trophic situations is an essential attribute of most pathogens. To maintain its virulence attributes A. fumigatus requires iron obtaining by hydroxamate type siderophores (ornitin monooxigenase/SidA), phosphorous obtaining (fos1, fos2, and fos3), signal transductional falls that regulate morphogenesis and/or usage of nutrients as nitrogen (rasA, rasB, rhbA), mitogen activated kinases (sakA codified MAP-kinase), AMPc-Pka signal transductional route, as well as others. In addition, they seem to be essential in this field the amino acid biosynthesis (cpcA and homoaconitase/lysF), the activation and expression of some genes at 37 degrees C (Hsp1/Asp f12, cgrA), some molecules and genes that maintain cellular viability (smcA, Prp8, anexins), etc. Conversely, knowledge about relationship between pathogen and immune response of the host has been improved, opening new research possibilities. The involvement of non-professional cells (endothelial, and tracheal and alveolar epithelial cells) and professional cells (natural killer or NK, and dendritic cells) in infection has been also observed. Pathogen Associated Molecular Patterns (PAMP) and Patterns Recognizing Receptors (PRR; as Toll like receptors TLR-2 and TLR-4) could influence inflammatory response and dominant cytokine profile, and consequently Th response to infec tion. Superficial components of fungus and host cell surface receptors driving these phenomena are still unknown, although some molecules already associated with its virulence could also be involved. Sequencing of A. fumigatus genome and study of gene expression during their infective process by using DNA microarray and biochips, promises to improve the knowledge of virulence of this fungus.  相似文献   

11.
Ras is a highly conserved GTPase protein that is essential for proper polarized morphogenesis of filamentous fungi. Localization of Ras proteins to the plasma membrane and endomembranes through posttranslational addition of farnesyl and palmitoyl residues is an important mechanism through which cells provide specificity to Ras signal output. Although the Aspergillus fumigatus RasA protein is known to be a major regulator of growth and development, the membrane distribution of RasA during polarized morphogenesis and the role of properly localized Ras signaling in virulence of a pathogenic mold remain unknown. Here we demonstrate that Aspergillus fumigatus RasA localizes primarily to the plasma membrane of actively growing hyphae. We show that treatment with the palmitoylation inhibitor 2-bromopalmitate disrupts normal RasA plasma membrane association and decreases hyphal growth. Targeted mutations of the highly conserved RasA palmitoylation motif also mislocalized RasA from the plasma membrane and led to severe hyphal abnormalities, cell wall structural changes, and reduced virulence in murine invasive aspergillosis. Finally, we provide evidence that proper RasA localization is independent of the Ras palmitoyltransferase homolog, encoded by erfB, but requires the palmitoyltransferase complex subunit, encoded by erfD. Our results demonstrate that plasma membrane-associated RasA is critical for polarized morphogenesis, cell wall stability, and virulence in A. fumigatus.  相似文献   

12.
13.
Notochord is an embryonic midline structure that serves as mechanical support for axis elongation and the signaling center for the surrounding tissues. Precursors of notochord are initially induced in the dorsal most mesoderm region in gastrulating embryo and separate from the surrounding mesoderm/endoderm tissue to form an elongated rod-like structure, suggesting that cell adhesion molecules may play an important role in this step. In Xenopus embryo, axial protocadherin (AXPC), an orthologue of mammalian Protocadherin-1 (PCDH1), is indispensable for the assembly and separation from the surrounding tissue of the notochord cells. However, the role of PCDH1 in mammalian notochord remains unknown. We herein report that PCDH1 is expressed in the notochord of mouse embryo and that PCDH1-deficient mice form notochord normally. First, we examined the temporal expression pattern of pcdh1 and found that pcdh1 mRNA was expressed from embryonic day (E) 7.5, prior to the stage when notochord cells detach from the surrounding endoderm tissue. Second, we found that PCDH1 protein is expressed in the notochord of mouse embryos in addition to the previously reported expression in endothelial cells. To further investigate the role of PCDH1 in embryonic development, we generated PCDH1-deficient mice using the CRISPR-Cas9 system. In PCDH1-deficient embryos, notochord formation and separation from the surrounding tissue were normal. Structure and marker gene expression of notochord were also unaffected by loss of PCDH1. Major vascular patterns in PCDH1-deficient embryo were essentially normal. These results suggest that PCDH1 is dispensable for notochord formation, including the tissue separation process, in mammalian embryos. We successfully identified the evolutionary conserved expression of PCDH1 in notochord, but its function may differ among species.  相似文献   

14.
15.
Infections with the filamentous fungus Aspergillus fumigatus are among the most devastating of the systemic mycoses. Unlike most primary pathogens, which possess virulence traits that developed in association with a host organism, evidence suggests that the virulence of A. fumigatus entails a collection of 'street-smart' attributes that have evolved to resist the adverse selection pressures encountered in decaying vegetation. These features enhance the overall competitiveness of the organism in its environmental niche but are also thought to promote growth and survival in a human host. Although many of the genes that are responsible for these characteristics do not fit into the classical definition of a virulence factor, they are nonetheless important to the pathogenesis of aspergillosis and may therefore provide novel opportunities for antifungal development.  相似文献   

16.
Gliotoxin is an immunosuppressive mycotoxin long suspected to be a potential virulence factor of Aspergillus fumigatus. Recent studies using mutants lacking gliotoxin production, however, suggested that the mycotoxin is not important for pathogenesis of A. fumigatus in neutropenic mice resulting from treatment with cyclophosphomide and hydrocortisone. In this study, we report on the pathobiological role of gliotoxin in two different mouse strains, 129/Sv and BALB/c, that were immunosuppressed by hydrocortisone alone to avoid neutropenia. These strains of mice were infected using the isogenic set of a wild type strain (B-5233) and its mutant strain (gliPDelta) and the the glip reconstituted strain (gliP(R)). The gliP gene encodes a nonribosomal peptide synthase that catalyzes the first step in gliotoxin biosynthesis. The gliPDelta strain was significantly less virulent than strain B-5233 or gliP(R) in both mouse models. In vitro assays with culture filtrates (CFs) of B-5233, gliPDelta, and gliP(R) strains showed the following: (i) deletion of gliP abrogated gliotoxin production, as determined by high-performance liquid chromatography analysis; (ii) unlike the CFs from strains B-5233 and gliP(R), gliPDelta CFs failed to induce proapoptotic processes in EL4 thymoma cells, as tested by Bak conformational change, mitochondrial-membrane potential disruption, superoxide production, caspase 3 activation, and phosphatidylserine translocation. Furthermore, superoxide production in human neutrophils was strongly inhibited by CFs from strain B-5233 and the gliP(R) strain, but not the gliPDelta strain. Our study confirms that gliotoxin is an important virulence determinant of A. fumigatus and that the type of immunosuppression regimen used is important to reveal the pathogenic potential of gliotoxin.  相似文献   

17.
Previous studies identified that the budding yeast Saccharomyces cerevisiae have two sphingolipid synthesis‐related proteins, Orm1p and Orm2p, that negatively regulate the activities of SPT, which is a key rate‐limiting enzyme in sphingolipid synthesis. However, little is known about whether sphingolipids in the cell membrane, which are closely related to ergosterols, could affect the efficacy of azole drugs, which target to the ergosterol biosynthesis. In this study, through genome‐wide homologue search analysis, we found that the Aspergillus fumigatus genome only contains one Orm homologue, referred to as OrmA for which the protein expression could be induced by azole antifungals in a dose‐dependent manner. Deletion of ormA caused hypersensitivity to azoles, and adding the sphingolipid synthesis inhibitor myriocin rescued the azole susceptibility induced by lack of ormA. In contrast, overexpression of OrmA resulted in azole resistance, indicating that OrmA is a positive azole‐response regulator. Further mechanism analysis verified that OrmA is related to drug susceptibility by affecting endoplasmic reticulum stress responses in an unfolded protein response pathway‐HacA‐dependent manner. Lack of ormA led to an abnormal profile of sphingolipid ceramide components accompanied by hypersensitivity to low temperatures. Furthermore, deletion of OrmA significantly reduced virulence in an immunosuppressed mouse model. The findings in this study collectively suggest that the sphingolipid metabolism pathway in A. fumigatus plays a critical role in azole susceptibility and fungal virulence.  相似文献   

18.
19.
20.
v-jun is a transcriptional activator, but not in all cell-lines   总被引:11,自引:3,他引:8       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号