首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorescent immunocytochemistry (FICC) allows multiple labeling approaches when enzyme-based techniques are difficult to combine, such as in double-labeling experiments targeting small-caliber axonal segments. Nevertheless, the conversion of FICC to a product visible at the electron microscopic (EM) level requires labor-intensive procedures, thus justifying the development of more user-friendly conversion methods. This study was initiated to simplify the conversion of FICC to EM by employing the unique properties of tyramide signal amplification (TSA), which allowed the simultaneous targeting of a fluorescent tag and biotin label to the same antigenic site. Briefly, one of two antigenic sites typically co-localized in damaged axonal segments was visualized by the application of a fluorescent secondary antibody, with the other tagged via a biotinylated antibody. Next, an ABC kit was used, followed by the simultaneous application of fluorophore-tyramide and biotin-tyramide. After temporary mounting for fluorescent digital photomicroscopy, sections were incubated in ABC and reacted with diaminobenzidine before EM analysis. Double-labeling fluorescent immunocytochemistry with TSA clearly delineated damaged axonal segments. In addition, these same axonal segments yielded high-quality EM images with discrete electron-dense reaction products, thereby providing a simple and reproducible means for following fluorescent analysis with EM.  相似文献   

2.
 Detection of integrated human papillomavirus type 16 (HPV-16) DNA in SiHa and CaSki cells was used as a model system to demonstrate sensitivity and resolution of a well defined target. Using 293- to 1987-base polymerase chain reaction (PCR)-synthesized probes to the E6 and E7 open reading frames of HPV-16, several fluorescent in situ hybridization (FISH) detection methods, enhanced with tyramide signal amplification (TSA), were compared. The synthetic probes were biotin labeled by a nick translation method and the hybridized probes were detected by various fluorescent TSA methods using cyanine 3 tyramide, biotinyl tyramide and a biotin TSA Plus reagent. High sensitivity detection in SiHa cells was demonstrated using a 619-base probe to detect two single copies of integrated HPV-16 DNA. In CaSki cells, which contain up to 600 copies of HPV-16 DNA, a 293-base probe was used for detection. The results of these comparisons show that with refinement of TSA methods and reagents, increasing levels of high sensitivity detection can be achieved and that these methods allow subnuclear localization as well. Accepted: 20 June 1997  相似文献   

3.
To increase the sensitivity of fluorescence in situ hybridization (FISH) for detection of low-abundance mRNAs, we performed FISH on cryostat sections of rat hypothalamus with biotin-labeled riboprobes to leptin receptor (ObRb) and amplified the signal by combining tyramide signal amplification (TSA) and Enzyme-Labeled Fluorescent alkaline phosphatase substrate (ELF) methods. First, TSA amplification was done with biotinylated tyramide. Second, streptavidin-alkaline phosphatase was followed by the ELF substrate, producing a bright green fluorescent reaction product. FISH signal for ObRb was undetectable when TSA or ELF methods were used alone, but intense ELF FISH signal was visible in hypothalamic neurons when the ELF protocol was preceded by TSA. The TSA-ELF was combined with FISH for pro-opiomelanocortin (POMC) and neuropeptide Y (NPY) mRNAs by hybridizing brain sections in a cocktail containing digoxigenin-labeled riboprobes to NPY or POMC mRNA and biotin-labeled riboprobes to ObRb mRNA. Dioxigenin-labeled NPY or POMC mRNA hybrids were subsequently detected first with IgG-Cy3. Then biotin-labeled leptin receptor hybrids were detected with the TSA-ELF method. Combining the ELF and TSA amplification techniques enabled FISH detection of scarce leptin receptor mRNAs and permitted the identification of leptin receptor mRNA in cells that also express NPY and POMC gene products.  相似文献   

4.
5.
 One hundred paraffin-embedded cervical biopsy specimens were tested for the presence of human papilloma virus (HPV) by in situ hybridization (ISH), and by direct and indirect in situ PCR (IS-PCR) in order to evaluate the efficiency of the different in situ methods in detecting HPV infection. ISH was performed using either commercial DNA probes or a cocktail of 5′-digoxigenin labeled oligoprimers. The same were used for ISH during indirect IS-PCR. To enhance the sensitivity of ISH several polymers, i.e., polyvinyl alcohol (PVA), polyethylene glycol, and polyvinylpyrrolidone were added to the alkaline phosphatase nitro blue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate (NBT/BCIP) reaction. Furthermore, tyramide signal amplification (TSA) was tried for signal amplification. Those samples treated with PVA during the NBT/BCIP reaction did not show any signal amplification whereas those treated with TSA exhibited a dramatic increase in sensitivity with usually acceptable signal to noise ratios. Our results show that, regarding sensitivity, ISH with subsequent signal amplification by TSA can be used as an almost equivalent alternative to the more cumbersome IS-PCR on routinely processed tissue specimens. When considering reproducibility, it is superior to IS-PCR. Accepted: 25 September 1998  相似文献   

6.
Progress has been made in improving the immunohistochemical detection of antigens for imaging and flow cytometry. We report the synthesis of a novel fluorescent horseradish peroxidase substrate, Cy3.29-tyramide, and its application in an enzyme-based signal amplification system, catalyzed reporter deposition (CARD). The catalyzed deposition of Cy3.29-tyramide was used to detect cell surface markers such as CD8 and CD25 on tonsil tissue and human lymphocytes. We compared the fluorescence CARD method to standard indirect immunofluorescence detection methods and found that an amplification of up to 15-fold was possible with CARD. The detection of the intracellular protein myosin II in fibroblastic cells and rabbit serum proteins blotted onto nitrocellulose was also improved. Thus, fluorescent CARD is a simple modification that can be made to standard immunofluorescence staining protocols to enhance significantly the detection of antigens.  相似文献   

7.
A highly specific in situ amplification strategy was designed for ultrasensitive detection of thrombin by combining the layer-by-layer (LBL) assembled amplification with alkaline phosphatase (ALP) and gold nanoparticles (Au) mediated silver deposition. High-density carboxyl functionalized graphene oxide (FGO) was introduced as a nanocarrier for LBL assembling of alkaline phosphatase decorated gold nanoparticles (ALP-Au), which was further adopted to label thrombin aptamer II. After sandwich-type reaction, numerous ALP were captured onto the aptasensor surface and catalyzed the hydrolysis of ascorbic acid 2-phosphate (AAP), which in situ generated ascorbic acid (AA), reducing Ag(+) to Ag nanoparticles (AgNPs) for electrochemical readout. Inspiringly, the in situ amplification strategy with ethanolamine as an effective blocking agent showed remarkable amplification efficiency, very little nonspecific adsorption, and low background signal, which was favorable to enhance the sensitivity of aptasensor. Our novel dramatic signal amplification strategy, with a detection limit of 2.7fM, showed about 2-3 orders of magnitude improvement in the sensitivity for thrombin detection compared to other universal enzyme-based electrochemical assay.  相似文献   

8.
We report an ultrasensitive electrochemical approach for the detection of uropathogen sequence-specific DNA target. The sensing strategy involves a dual signal amplification process, which combines the signal enhancement by the enzymatic target recycling technique with the sensitivity improvement by the quantum dot (QD) layer-by-layer (LBL) assembled labels. The enzyme-based catalytic target DNA recycling process results in the use of each target DNA sequence for multiple times and leads to direct amplification of the analytical signal. Moreover, the LBL assembled QD labels can further enhance the sensitivity of the sensing system. The coupling of these two effective signal amplification strategies thus leads to low femtomolar (5fM) detection of the target DNA sequences. The proposed strategy also shows excellent discrimination between the target DNA and the single-base mismatch sequences. The advantageous intrinsic sequence-independent property of exonuclease III over other sequence-dependent enzymes makes our new dual signal amplification system a general sensing platform for monitoring ultralow level of various types of target DNA sequences.  相似文献   

9.
In this study, we applied tyramide signal amplification (TSA) to fluorescence enzyme-linked immunosorbent assay (ELISA) employing horseradish peroxidase (HRP) as the detection enzyme. When used with a human epidermal growth factor ELISA kit, the TSA method led to a >100-fold increase in fluorescence signal intensity in comparison to an unamplified method. It also showed wider dynamic range and better sensitivity compared to a conventional method using tetramethylbenzidine as the HRP substrate.  相似文献   

10.
Confocal imaging uses immunohistochemical binding of specific antibodies to visualize tissues, but technical obstacles limit more widespread use of this technique in the imaging of peripheral nerve tissue. These obstacles include same-species antibody cross-reactivity and weak fluorescent signals of individual and co-localized antigens. The aims of this study were to develop new immunohistochemical techniques for imaging of peripheral nerve fibers. Three-millimeter punch skin biopsies of healthy individuals were fixed, frozen, and cut into 50-µm sections. Tissues were stained with a variety of antibody combinations with two signal amplification systems, streptavidin-biotin-fluorochrome (sABC) and tyramide-horseradish peroxidase-fluorochrome (TSA), used simultaneously to augment immunohistochemical signals. The combination of the TSA and sABC amplification systems provided the first successful co-localization of sympathetic adrenergic and sympathetic cholinergic nerve fibers in cutaneous human sweat glands and vasomotor and pilomotor systems. Primary antibodies from the same species were amplified individually without cross-reactivity or elevated background interference. The confocal fluorescent signal-to-noise ratio increased, and image clarity improved. These modifications to signal amplification systems have the potential for widespread use in the study of human neural tissues.  相似文献   

11.
Assay sensitivities using three fluorescent signal generation schemes were evaluated on the Luminex flow cytometer. Following microsphere capture of antigen by immobilized antibodies, bound targets were quantified by use of (1) Cy3-labeled "tracer" antibodies (30min total time), (2) biotinylated tracers followed by streptavidin-R-phycoerythrin (60min total time), or (3) biotinylated tracers followed by avidin-peroxidase conjugates and tyramide signal amplification (TSA; 90min total time). Use of TSA for signal generation in three individual toxin assays improved performance up to 100-fold over Cy3-antibody-based detection, and while streptavidin-R-phycoerythrin provided equivalent sensitivities, TSA produced dramatic increases at low concentrations simplifying positive sample identification. Detection limits for TSA-interrogated assays for ricin, cholera toxin, and staphylococcal enterotoxin B were 64pg/ml, 4pg/ml, and 0.1ng/ml, respectively, using optimized conjugates; analogous detection limits for Cy3-antibody-interrogated assays were 8ng/ml, 1ng/ml, and 1ng/ml, respectively. No improvement was observed in botulinum toxoid A assays when TSA amplification was used. As unique preferences for specific avidin-peroxidase conjugates were observed in the individual assays, improvements in multiplexed assays utilizing a single conjugate were significantly lower (3-10-fold improvements). Furthermore, increases in variability resulted in poorer performance of TSA-interrogated assays for botulinum toxoid, indicating that assay-specific optimization should be performed, especially prior to multiplexing.  相似文献   

12.
Individual cyanobacterial cells are normally identified in environmental samples only on the basis of their pigmentation and morphology. However, these criteria are often insufficient for the differentiation of species. Here, a whole-cell hybridization technique is presented that uses horseradish peroxidase (HRP)-labeled, rRNA-targeted oligonucleotides for in situ identification of cyanobacteria. This indirect method, in which the probe-conferred enzyme has to be visualized in an additional step, was necessary since fluorescently monolabeled oligonucleotides were insufficient to overstain the autofluorescence of the target cells. Initially, a nonfluorescent detection assay was developed and successfully applied to cyanobacterial mats. Later, it was demonstrated that tyramide signal amplification (TSA) resulted in fluorescent signals far above the level of autofluorescence. Furthermore, TSA-based detection of HRP was more sensitive than that based on nonfluorescent substrates. Critical points of the assay, such as cell fixation and permeabilization, specificity, and sensitivity, were systematically investigated by using four oligonucleotides newly designed to target groups of cyanobacteria.  相似文献   

13.
Antibody-overlay lectin microarray (ALM) has been used for targeted glycan profiling to identify disease-related protein glycoforms. In this context, high sensitivity is desired because it allows for the identification of disease-related glycoforms that are often present at low concentrations. We describe a new tyramide signal amplification (TSA) for the antibody-overlay lectin microarray procedure for sensitive profiling of glycosylation patterns. We demonstrate that TSA increased the sensitivity of the microarray over 100 times for glycan profiling using the model protein prostate specific antigen (PSA). The glycan profile of PSA enriched from LNCAP cells, obtained at a subnanogram level with the aid of TSA, was consistent with the previous reports. We also established the glycan profile of prostate specific membrane antigen (PSMA) using the TSA and ALM. Thus, the TSA for antibody-overlay lectin microarray is a sensitive, rapid, comprehensive, and high-throughput method for targeted glycan profiling and can potentially be used for the identification of disease-related protein glycoforms.  相似文献   

14.
The needs to precisely assign macromolecules to specific locations and domains within tissues and cells and to reveal antigens which are present in low or even in trace amounts, led to the elaboration of a wide spectrum of immunocytochemical amplification procedures. These arise from the successive improvements of tissue preparation techniques, of antigen retrieval procedures and of immunological or non-immunological detection systems. Improvement of detection systems may be the most active in the development of amplification techniques. Since the early work of Coons, in which by the introduction of the indirect technique has started amplifying the signal, different systems have succeeded in increasing the sensitivity of antigens detection. Indeed, amplification techniques such as the multiple antibody layers, the multiple bridges, the enzyme complexes, the avidin-biotin, the silver intensification, and the numerous variations and combinations among these have increased the sensitivity for the detection of scarce tissue antigens. However, as shown by the recent progress carried out with new approaches such as the catalyzed reporter deposition (CARD) and the enhanced polymer one-step staining (EPOS), more efficient methods are still needed. In electron microscopy, few techniques have reached the resolution afforded by the post-embedding immunogold approach. In spite of this and in order to further increase its sensitivity, new probes and novel approaches are allowing combination of the gold marker with the amplification capacity of enzymes afforded by the CARD technique. Immunogold amplification strategies, such as the multiple incubations with the primary antibody and the use of an anti-protein A antibody have also led to enhanced signals displaying the advantages in terms of resolution and possibilities of quantification inherent to the colloidal gold marker.  相似文献   

15.
Signal amplification techniques greatly enhance the sensitivity of immunohistochemical (IHC) and in situ hybridization (ISH) methods. In particular, catalyzed signal amplification (CSA) using labeled tyramide or Nanogold-silver staining is an important signal amplification tool. We have applied a combination of both techniques, as has been introduced for ISH, for a further increase in sensitivity of an IHC method to detect cathepsin B. This lysosomal proteinase can also be expressed extracellularly, particularly in relation to cancer metastasis. Higher sensitivity of the IHC method was needed because existing methods failed to demonstrate cathepsin B protein where cathepsin B activity was found with a fluorescence enzyme histochemical method. Combined CSA and Nanogold-silver staining provided the sensitivity that was required. Moreover, this signal amplification method enabled the use of a 10-fold lower concentration of primary antibody (1 microg/ml). Nonspecific background staining was low provided that endogenous biotin, avidin, and peroxidase were completely blocked. The method was reproducible when all steps, and particularly the silver enhancement step, were rigidly controlled. The method resulted in localization patterns of cathepsin B protein that were in agreement with those of cathepsin B activity in serial sections of rat liver containing colon cancer metastases. We concluded that combined application of CSA and Nanogold-silver staining provides high sensitivity for immunohistochemical methods and that activity localization by an enzyme histochemical method is a very attractive alternative to IHC localization of an enzyme because it is at least as sensitive, it is rapid and simple, and it provides direct information on the function of an enzyme.  相似文献   

16.
The ability to determine spatial and temporal microRNA (miRNA) accumulation at the tissue, cell and subcellular levels is essential for understanding the biological roles of miRNAs and miRNA-associated gene regulatory networks. This protocol describes a method for fast and effective detection of miRNAs in frozen tissue sections using fluorescence in situ hybridization (FISH). The method combines the unique miRNA recognition properties of locked nucleic acid (LNA)-modified oligonucleotide probes with FISH using the tyramide signal amplification (TSA) technology. Although both approaches have previously been shown to increase detection sensitivity in FISH, combining these techniques into one protocol significantly decreases the time needed for miRNA detection in cryosections, while simultaneously retaining high detection sensitivity. Starting with fixation of the tissue sections, this miRNA FISH protocol can be completed within approximately 6 h and allows miRNA detection in a wide variety of animal tissue cryosections as well as in human tumor biopsies at high cellular resolution.  相似文献   

17.
Developments in microarray technology promise to lead to great advancements in the biomedical and biological field. However, implementation of these analytical tools often relies on signal amplification strategies that are essential to reach the sensitivity levels required for a variety of biological applications. This is true especially for reverse phase arrays where a complex biological sample is directly immobilized on the chip. We present a simple and generic method for signal amplification based on the use of antibody-tagged fluorescent vesicles as labels for signal generation. To assess the gain in assay sensitivity, we performed a model assay for the detection of rabbit immunoglobulin G (IgG) and compared the limit of detection (LOD) of the vesicle assay with the LOD of a conventional assay performed with fluorescent reporter molecules. We evaluated the improvements for two fluorescence-based transduction setups: a high-sensitivity microarray reader (ZeptoREADER) and a conventional confocal scanner. In all cases, our strategy led to an increase in sensitivity. However, gain in sensitivity widely depended on the type of illumination; whereas an approximately 2-fold increase in sensitivity was observed for readout based on evanescent field illumination, the contribution was as high as more than 200-fold for confocal scanning.  相似文献   

18.
即时检测(point-of-care testing,POCT)是一种检测成本低、检测速度快、准确度高、能自我采样获得临床诊断结果的新型诊断技术。该技术在临床诊断、病情监控与疫情防控等领域发挥了重要作用。核酸适配体是一种能够特异性识别多种靶标的分子探针,具有易合成、批间差异小、易实现信号放大等突出优势,是生物医学传感器中重要的分子识别元件。本文概述了核酸适配体探针的现有筛选方法和进展,总结了核酸适配体POCT传感器信号放大策略,着重介绍了各类核酸适配体传感器在POCT领域的应用现状,并对核酸适配体POCT传感器的发展前景进行了展望。  相似文献   

19.
Molecular beacons represent a new family of fluorescent probes for nucleic acids, and have found broad applications in recent years due to their unique advantages over traditional probes. Detection of nucleic acids using molecular beacons has been based on hybridization between target molecules and molecular beacons in a 1:1 stoichiometric ratio. The stoichiometric hybridization, however, puts an intrinsic limitation on detection sensitivity, because one target molecule converts only one beacon molecule to its fluorescent form. To increase the detection sensitivity, a conventional strategy has been target amplification through polymerase chain reaction. Instead of target amplification, here we introduce a scheme of signal amplification, nicking enzyme signal amplification, to increase the detection sensitivity of molecular beacons. The mechanism of the signal amplification lies in target-dependent cleavage of molecular beacons by a DNA nicking enzyme, through which one target DNA can open many beacon molecules, giving rise to amplification of fluorescent signal. Our results indicate that one target DNA leads to cleavage of hundreds of beacon molecules, increasing detection sensitivity by nearly three orders of magnitude. We designed two versions of signal amplification. The basic version, though simple, requires that nicking enzyme recognition sequence be present in the target DNA. The extended version allows detection of target of any sequence by incorporating rolling circle amplification. Moreover, the extended version provides one additional level of signal amplification, bringing the detection limit down to tens of femtomolar, nearly five orders of magnitude lower than that of conventional hybridization assay.  相似文献   

20.
Signal amplification in conventional enzyme-based biosensors is not high enough to achieve the ultrasensitive detection of biomolecules. In recent years, signal amplification has been improved by combining enzymatic reactions with redox cycling or employing multienzyme labels per detection probe. Electrochemical-chemical redox cycling and electrochemical-chemical-chemical redox cycling allow ultrasensitive detection simply by including one or two more chemicals in a solution without the use of an additional enzyme and/or electrode. Multiple horseradish peroxidase labels on magnetic bead carriers provide high signal enhancement along with a multiplex detection possibility. In both cases, the detection procedures are the same as those in conventional enzyme-based electrochemical sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号