首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K R Kennedi 《Parazitologiia》1985,19(5):347-355
The present state of parasite population biology is reviewed with special reference to parasites of fish. Mathematical models have provided a coherent body of theory which is supported by many laboratory investigations. There is nevertheless some disagreement between predictions based on this theory and data obtained from investigations of natural parasite populations. It is suggested that this is partly due to the oversimplifications and limitations of the models, and partly to the unsystematic approach of many field investigations and the resulting shortage of data of the right sort. In freshwater habitats disagreement may also be due to the rapid and extensive changes that are taking place in the habitats themselves as a direct consequence of human activities. Future developments should involve models becoming more realistic, and field investigations being conducted in a more systematic and analytical manner in order to obtain quantitative measurements of the essential population parameters.  相似文献   

2.
Green seaweeds exhibit a wide range of morphologies and occupy various ecological niches, spanning from freshwater to marine and terrestrial habitats. These organisms, which predominantly belong to the class Ulvophyceae, showcase a remarkable instance of parallel evolution toward complex multicellularity and macroscopic thalli in the Viridiplantae lineage. Within the green seaweeds, several Ulva species (“sea lettuce”) are model organisms for studying carbon assimilation, interactions with bacteria, life cycle progression, and morphogenesis. Ulva species are also notorious for their fast growth and capacity to dominate nutrient-rich, anthropogenically disturbed coastal ecosystems during “green tide” blooms. From an economic perspective, Ulva has garnered increasing attention as a promising feedstock for the production of food, feed, and biobased products, also as a means of removing excess nutrients from the environment. We propose that Ulva is poised to further develop as a model in green seaweed research. In this perspective, we focus explicitly on Ulva mutabilis/compressa as a model species and highlight the molecular data and tools that are currently available or in development. We discuss several areas that will benefit from future research or where exciting new developments have been reported in other Ulva species.  相似文献   

3.
Algae are a group of ubiquitous photosynthetic organisms comprising eukaryotic green algae and Gram-negative prokaryotic cyanobacteria, which have immense potential as a bioresource for various industries related to biofuels, pharmaceuticals, nutraceuticals and feed. This fascinating group of organisms also has applications in modern agriculture through facilitating increased nutrient availability, maintaining the organic carbon and fertility of soil, and enhancing plant growth and crop yields, as a result of stimulation of soil microbial activity. Several cyanobacteria provide nitrogen fertilization through biological nitrogen fixation and through enzymatic activities related to interconversions and mobilization of different forms of nitrogen. Both green algae and cyanobacteria are involved in the production of metabolites such as growth hormones, polysaccharides, antimicrobial compounds, etc., which play an important role in the colonization of plants and proliferation of microbial and eukaryotic communities in soil. Currently, the development of consortia of cyanobacteria with bacteria or fungi or microalgae or their biofilms has widened their scope of utilization. Development of integrated wastewater treatment and biomass production systems is an emerging technology, which exploits the nutrient sequestering potential of microalgae and its valorisation. This review focuses on prospects and challenges of application of microalgae in various areas of agriculture, including crop production, protection and natural resource management. An overview of the recent advances, novel technologies developed, their commercialization status and future directions are also included.  相似文献   

4.
Plants are valuable sources of a variety of chemicals including drugs, flavours, pigments and agrochemicals. Some of the biochemical reactions occurring in plant cells are complex and cannot be achieved by synthetic routes. In vitro plant cell and organ cultures and plant enzymes act as suitable biocatalysts to perform these complex reactions. A wide variety of chemical compounds including aromatics, steroids, alkaloids, coumarins and terpenoids can undergo biotransformations using plant cells, organ cultures and enzymes. The biocatalyst-mediated reactions are regiospecific and stereospecific. Reaction types include oxidations, reductions, hydroxylations, methylations, acetylations, isomerizations, glycosylations and esterfications. Genetic manipulation approaches to biotransformation offer great potential to express heterologous genes and to clone and overexpress genes for key enzymes. Biotransformation efficiencies can further be improved using molecular techniques involving site-directed mutagenesis and gene manipulation for substrate specificity.  相似文献   

5.
6.
7.
Nutraceuticals are food substances with medical and health benefits for humans. Limited by complicated procedures, high cost, low yield, insufficient raw materials, resource waste, and environment pollution, chemical synthesis and extraction are being replaced by microbial synthesis of nutraceuticals. Many microbial strains that are generally regarded as safe (GRAS) have been identified and developed for the synthesis of nutraceuticals, and significant nutraceutical production by these strains has been achieved. In this review, we systematically summarize recent advances in nutraceutical research in terms of physiological effects on health, potential applications, drawbacks of traditional production processes, characteristics of production strains, and progress in microbial fermentation. Recent advances in systems and synthetic biology techniques have enabled comprehensive understanding of GRAS strains and its wider applications. Thus, these microbial strains are promising cell factories for the commercial production of nutraceuticals.  相似文献   

8.

Background  

The biological information in genomic expression data can be understood, and computationally extracted, in the context of systems of interacting molecules. The automation of this information extraction requires high throughput management and analysis of genomic expression data, and integration of these data with other data types.  相似文献   

9.
With advances in determining the entire DNA sequence of the human genome, it is now critical to systematically identify the function of a number of genes in the human genome. These biological challenges, especially those in human diseases, should be addressed in human cells in which conventional (e.g. genetic) approaches have been extremely difficult to implement. To overcome this, several approaches have been initiated. This review will focus on the development of a novel "chemical genetic/genomic approach" that uses small molecules to "probe and identify" the function of genes in specific biological processes or pathways in human cells. Due to the close relationship of small molecules with drugs, these systematic and integrative studies will lead to the "medicinal systems biology approach" which is critical to "formulate and modulate" complex biological (disease) networks by small molecules (drugs) in human bio-systems.  相似文献   

10.
R. J. Benzie 《CMAJ》1979,120(6):685-692
The current status of antenatal genetic diagnosis is reviewed and the limitations of present techniques are discussed. It is suggested that multidisciplinary clinics are the most efficient means of providing this aspect of health care. Advances in cell culture techniques, in ultrasonography and in fetoscopy will extend the services available, and the impact of this will be felt by the community. Education of the medical profession and the public in this area is necessary so that informed decision-making can take place.  相似文献   

11.
12.
A survey of the specific features of flow cytometry, principals of instrumentation and main parameters of the modern cell sorting cytometers is given. Analytical capacities of flow cytometry as well as the main directions of its applications in cell biology, clinical diagnostics, immunology, biotechnology and molecular biology are considered. Also a possible future development of flow cytometry instrumentation and applications in molecular biology are briefly discussed.  相似文献   

13.
基于生物质资源生产环境友好的生物燃料,对经济和社会的可持续发展具有重要意义,但其生产成本高的问题十分突出,而高效生产菌株的获得是解决这一问题的根本出路。以下综述了利用系统生物学研究所获得的信息进行菌种改造的过程,重点论述了生产菌株胁迫耐受性方面的研究进展,并讨论了系统生物学、合成生物学和代谢工程技术在改造生物燃料生产菌株中的应用,展望了合成生物学在构建高效生物能源生产菌株方面应用的前景。  相似文献   

14.
Modularization of different functional segments in plasmid vectors eases creation of genetic tools á la carte for Pseudomonas.
  相似文献   

15.
Rice (Oryza sativa L.) and maize (Zey mays) are grown in 3.5 million hectares (Mha) in Asia that includes 1.5 Mha in South Asia. These crops are grown in sequence on the same land in the same year either in double–or triple-crop systems to meet the rice demand of a rapidly expanding human population and maize demand of livestock and poultry. The objective of this review is to provide a comprehensive overview of the current state of technical knowledge on agro-ecosystems and adaptation, area and distribution, yield potential and yield gaps, and nutrient management for rice-maize (R-M) systems in South Asia. Rice-maize systems are emerging all around South Asia but in particular are developing quite rapidly in Bangladesh and South and North India. Yield potential of rice and maize, as estimated by ORYZA2000 and Hybrid Maize models, reaches up to 15 and 22 t ha-1, respectively. However, data from several environments in India reveal gaps between potential and attainable yields of maize of upto 100% and between attainable and actual yields of upto 25–50%. Nutrient demand of R-M system is high due to high nutrient removal by high-yielding maize. Nutrient balance studies for these highly–productive and nutrient-extractive systems are scarce in South Asia. The review outlines principles of nutrient management for R-M systems, and identifies development, refinement, and dissemination of the integrated plant nutrition system technologies based on site-specific nutrient management principles as priorities for future research to increase yield, profitability, and sustainability of R-M systems.  相似文献   

16.
Although many of the statistical techniques used in comparative biology were originally developed in quantitative genetics, subsequent development of comparative techniques has progressed in relative isolation. Consequently, many of the new and planned developments in comparative analysis already have well‐tested solutions in quantitative genetics. In this paper, we take three recent publications that develop phylogenetic meta‐analysis, either implicitly or explicitly, and show how they can be considered as quantitative genetic models. We highlight some of the difficulties with the proposed solutions, and demonstrate that standard quantitative genetic theory and software offer solutions. We also show how results from Bayesian quantitative genetics can be used to create efficient Markov chain Monte Carlo algorithms for phylogenetic mixed models, thereby extending their generality to non‐Gaussian data. Of particular utility is the development of multinomial models for analysing the evolution of discrete traits, and the development of multi‐trait models in which traits can follow different distributions. Meta‐analyses often include a nonrandom collection of species for which the full phylogenetic tree has only been partly resolved. Using missing data theory, we show how the presented models can be used to correct for nonrandom sampling and show how taxonomies and phylogenies can be combined to give a flexible framework with which to model dependence.  相似文献   

17.
The incidence of Down syndrome (DS) at conception is highly dependent upon the maternal age distribution and age-specific pregnancy rates. Live-birth prevalence of DS reflects these factors and fetal deaths. Since the introduction of prenatal diagnosis in the early 1970s, the role of fetal deaths in the equation has increased. Between 1920 and the early 1980s, DS live-birth prevalence decreased in many populations due to declining fertility rates, particularly among older women. In the late-1970s the trend reversed, as the median age of populations and birth rates among older women steadily increased. This paper illustrates these interactions using data we have analyzed for New York State (NYS) and comparative data obtained from the literature. Between 1983 and 1997 DS live-birth prevalence in NYS remained stable at about 9.9 per 10,000 live births. The number of prenatal tests performed increased by 158%, and the number of DS fetuses detected prenatally more than quadrupled. Fertility rates of women aged 35-49 continued to increase. The proportion of DS cases born to these older mothers increased from 23% in 1985 to 43% in 1997. We estimated that without prenatal diagnosis, DS live-birth prevalence would have been 17.0 per 10,000 live births by 1995. Cultural factors influence demographic trends, birthing technologies, physician practices, and women's decision-making regarding prenatal screening and diagnosis for DS.  相似文献   

18.

Book reviews

Current options for cereal improvement: Double haploids, mutants and heterosisM. Maluszynski (Ed.), (Advances in Agricultural Biotechnology, Seris 24). Dordrecht: Kluwer Academic Publishers, Guelph, Canada Proceedings of the first FAO/IAEA research co-ordination meeting on the use of induced mutations in connection with haploids and heterosis in creals, 8–12 December 1986, 19. vii + 214 pages. £32.50 ISBN 0-7923-0064-5  相似文献   

19.

Background

GBLUP (genomic best linear unbiased prediction) uses high-density single nucleotide polymorphism (SNP) markers to construct genomic identity-by-state (IBS) relationship matrices. However, identity-by-descent (IBD) relationships can be accurately calculated for extremely sparse markers. Here, we compare the accuracy of prediction of genome-wide breeding values (GW-BV) for a sib-evaluated trait in a typical aquaculture population, assuming either IBS or IBD genomic relationship matrices, and by varying marker density and size of the training dataset.

Methods

A simulation study was performed, assuming a population with strong family structure over three subsequent generations. Traditional and genomic BLUP were used to estimate breeding values, the latter using either IBS or IBD genomic relationship matrices, with marker densities ranging from 10 to ~1200 SNPs/Morgan (M). Heritability ranged from 0.1 to 0.8, and phenotypes were recorded on 25 to 45 sibs per full-sib family (50 full-sib families). Models were compared based on their predictive ability (accuracy) with respect to true breeding values of unphenotyped (albeit genotyped) sibs in the last generation.

Results

As expected, genomic prediction had greater accuracy compared to pedigree-based prediction. At the highest marker density, genomic prediction based on IBS information (IBS-GS) was slightly superior to that based on IBD information (IBD-GS), while at lower densities (≤100 SNPs/M), IBD-GS was more accurate. At the lowest densities (10 to 20 SNPs/M), IBS-GS was even outperformed by the pedigree-based model. Accuracy of IBD-GS was stable across marker densities performing well even down to 10 SNPs/M (2.5 to 6.1% reduction in accuracy compared to ~1200 SNPs/M). Loss of accuracy due to reduction in the size of training datasets was moderate and similar for both genomic prediction models. The relative superiority of (high-density) IBS-GS over IBD-GS was more pronounced for traits with a low heritability.

Conclusions

Using dense markers, GBLUP based on either IBD or IBS relationship matrices proved to perform better than a pedigree-based model. However, accuracy of IBS-GS declined rapidly with decreasing marker densities, and was even outperformed by a traditional pedigree-based model at the lowest densities. In contrast, the accuracy of IBD-GS was very stable across marker densities.  相似文献   

20.
Pectin: cell biology and prospects for functional analysis   总被引:27,自引:0,他引:27  
Pectin is a major component of primary cell walls of all land plants and encompasses a range of galacturonic acid-rich polysaccharides. Three major pectic polysaccharides (homogalacturonan, rhamnogalacturonan-I and rhamnogalacturonan-II) are thought to occur in all primary cell walls. This review surveys what is known about the structure and function of these pectin domains. The high degree of structural complexity and heterogeneity of the pectic matrix is produced both during biosynthesis in the endomembrane system and as a result of the action of an array of wall-based pectin-modifying enzymes. Recent developments in analytical techniques and in the generation of anti-pectin probes have begun to place the structural complexity of pectin in cell biological and developmental contexts. The in muro de-methyl-esterification of homogalacturonan by pectin methyl esterases is emerging as a key process for the local modulation of matrix properties. Rhamnogalacturonan-I comprises a highly diverse population of spatially and developmentally regulated polymers, whereas rhamnogalacturonan-II appears to be a highly conserved and stable pectic domain. Current knowledge of biosynthetic enzymes, plant and microbial pectinases and the interactions of pectin with other cell wall components and the impact of molecular genetic approaches are reviewed in terms of the functional analysis of pectic polysaccharides in plant growth and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号