首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Effects of open channel blockers of AMPA/kainate receptors have been examined using whole cell recordings and kainate application in the neurons freshly isolated by vibrodissociation from the rat hippocampal slice preparation. Although the hippocampal neurons differed little in the voltage-current relations and sensitivity to kainate, a prominent difference was found in their susceptibility to the blocking action of adamantane derivatives studied. The pyramidal neurons had low sensitivity to the open channel blockers but the neurons which might be assigned most probably to the group of inhibitory interneurons proved to be highly sensitive. A group of neurons of intermediate sensitivity have also been found. The ability of the same blocking drugs to depress the excitatory inputs in the inhibitory interneurons has been demonstrated in the experiments on the hippocampal slice preparation. Enhancement of the field spike and excitatory postsynaptic potential amplitude was observed in the presence of adamantane derivatives. An additional treatment of the preparation with a GABA receptor antagonist, bicuculline, did not potentiate this effect. In conclusion, the observed difference in the pharmacological properties of inhibitory interneurons may be effectively used for detailed analysis of the brain synaptic transmission.  相似文献   

3.
How does the sensory environment shape circuit organization in higher brain centers? Here we have addressed the dependence on activity of a defined circuit within the mushroom body of adult Drosophila. This is a brain region receiving olfactory information and involved in long-term associative memory formation. The main mushroom body input region, named the calyx, undergoes volumetric changes correlated with alterations of experience. However, the underlying modifications at the cellular level remained unclear. Within the calyx, the clawed dendritic endings of mushroom body Kenyon cells form microglomeruli, distinct synaptic complexes with the presynaptic boutons of olfactory projection neurons. We developed tools for high-resolution imaging of pre- and postsynaptic compartments of defined calycal microglomeruli. Here we show that preventing firing of action potentials or synaptic transmission in a small, identified fraction of projection neurons causes alterations in the size, number, and active zone density of the microglomeruli formed by these neurons. These data provide clear evidence for activity-dependent organization of a circuit within the adult brain of the fly.  相似文献   

4.
Rusakov DA  Fine A 《Neuron》2003,37(2):287-297
Synaptic activation is associated with rapid changes in intracellular Ca(2+), while the extracellular Ca(2+) level is generally assumed to be constant. Here, using a novel optical method to measure changes in extracellular Ca(2+) at high spatial and temporal resolution, we find that brief trains of synaptic transmission in hippocampal area CA1 induce transient depletion of extracellular Ca(2+). We show that this depletion, which depends on postsynaptic NMDA receptor activation, decreases the Ca(2+) available to enter individual presynaptic boutons of CA3 pyramidal cells. This in turn reduces the probability of consecutive synaptic releases at CA3-CA1 synapses and therefore contributes to short-term paired-pulse depression of minimal responses. This activity-dependent depletion of extracellular Ca(2+) represents a novel form of fast retrograde synaptic signaling that can modulate glutamatergic information transfer in the brain.  相似文献   

5.
Analysis of synaptic transmission, synaptic plasticity, axonal processing, synaptic timing or electrical coupling requires the simultaneous recording of both the pre- and postsynaptic compartments. Paired-recording technique of monosynaptically connected neurons is also an appropriate technique to probe the function of small molecules (calcium buffers, peptides or small proteins) at presynaptic terminals that are too small to allow direct whole-cell patch-clamp recording. We describe here a protocol for obtaining, in acute and cultured slices, synaptically connected pairs of cortical and hippocampal neurons, with a reasonably high probability. The protocol includes four main stages (acute/cultured slice preparation, visualization, recording and analysis) and can be completed in approximately 4 h.  相似文献   

6.
Li J  Ashley J  Budnik V  Bhat MA 《Neuron》2007,55(5):741-755
Neurexins have been proposed to function as major mediators of the coordinated pre- and postsynaptic apposition. However, key evidence for this role in vivo has been lacking, particularly due to gene redundancy. Here, we have obtained null mutations in the single Drosophila neurexin gene (dnrx). dnrx loss of function prevents the normal proliferation of synaptic boutons at glutamatergic neuromuscular junctions, while dnrx gain of function in neurons has the opposite effect. DNRX mostly localizes to the active zone of presynaptic terminals. Conspicuously, dnrx null mutants display striking defects in synaptic ultrastructure, with the presence of detachments between pre- and postsynaptic membranes, abnormally long active zones, and increased number of T bars. These abnormalities result in corresponding alterations in synaptic transmission with reduced quantal content. Together, our results provide compelling evidence for an in vivo role of neurexins in the modulation of synaptic architecture and adhesive interactions between pre- and postsynaptic compartments.  相似文献   

7.
Little is known about the effects of aging on synapses in the mammalian nervous system. We examined the innervation of individual mouse submandibular ganglion (SMG) neurons for evidence of age-related changes in synapse efficacy and number. For approximately 85% of adult life expectancy (30 months) the efficacy of synaptic transmission, as determined by excitatory postsynaptic potential (EPSP) amplitudes, remains constant. Similarly, the number of synapses contacting individual SMG neurons is also unchanged. After 30 months of age, however, some neurons (23%) dramatically lose synaptic input exhibiting both smaller EPSP amplitude and fewer synaptic boutons. Attenuation of both the amplitude and frequency of miniature EPSPs was also observed in neurons from aged animals. Electron micrographs revealed that, although there were many vesicle-laden preganglionic axonal processes in the vicinity of the postsynaptic membrane, the number of synaptic contacts was significantly lower in old animals. These results demonstrate primary, age-associated synapse elimination with functional consequences that cannot be explained by pre- or postsynaptic cell death.  相似文献   

8.
We have combined electrophysiology and immunohistochemistry to study the somatostatin (SS) innervation of neurons in the rat hippocampal slice. After recording the intracellular response of a pyramidal CA1 neuron in vitro to SS, Lucifer Yellow was injected into the cell and the slice fixed and processed for immunohistochemical localization of SS in the vicinity of the recorded neuron. Most pyramidal neurons (70%) responded to SS with a hyperpolarization associated with marked slowing of spontaneous discharge and reduced input resistance. SS-containing elements either crossed, ran parallel or seemingly terminated on the Lucifer Yellow-filled SS-responsive cell. These occurrences of close proximity of apparent pre- and postsynaptic elements were observed in all layers of the CA1 region and may represent synaptic terminations of SS elements on a pyramidal neuron that are likely to elicit membrane hyperpolarizations.  相似文献   

9.
Summary. Spinal motor neurons possess reticular coats of extracellular matrix proteoglycans on their somata and proximal dendrites. In order to define the anatomical background of the network, spatial relationships of the perineuronal proteoglycans with synaptic boutons and astrocyte processes were analyzed in rat motor neurons by TEM after histochemical detection of the substances with cationic iron colloid, and by SEM after exposure of the cytoarchitecture with NaOH maceration. Narrow intercellular channels filled with proteoglycan were found to extend along the surface of the neurons to form a homogeneous network of a mesh size of about 1 µm. The system of perineuronal channels consisted of two parts: a primary intervaricose net which meandered among synaptic boutons on the surface of the motor neuron, and secondary subvaricose nets which irrigated interfaces between larger boutons and the neuron. No elements in the perineuronal cytoarchitecture coincided with the meshwork of proteoglycan, indicating the involvement of postsynaptic factors in the distribution of the substance. Thin astrocyte processes surrounding the neurons formed a distinct network with heterogeneous meshes corresponding to boutons of various sizes. The perineuronal glial nets extended their surface area in contact with the intervaricose nets of proteoglycan by complex cellular interdigitations. The subvaricose nets of proteoglycan compartmentalized multiple synapses on large boutons, suggesting an involvement in the division of the synapses during development.  相似文献   

10.
The magnocellular neuropeptidergic cells (MNCs) of the paraventricular and supraoptic nuclei have been a model for biochemical and physiological studies of peptidergic neurons in the mammalian brain, but nearly all the electrophysiological studies of these vasopressinergic and oxytocinergic neuroendocrine cells are based on extracellular recordings. This paper reviews recent literature on electrophysiological properties of neurons in the magnocellular nuclei in which the rat in vitro slice preparation and intracellular recording were used. Spontaneously occurring action potentials and synaptic potentials (excitatory and inhibitory) have been observed in hypothalamic slices. The spike patterns have included slow and irregular firing, short rapid bursts of inactivating spikes, and slow phasic discharge with prolonged active and silent periods. Some studies have shown that increased osmolality causes neuronal firing, but this area is controversial. Intracellular injections of lucifer yellow have shown that some MNCs are dye-coupled and electron microscopic observations with the freeze-fracture technique have revealed occasional gap junctions, thus suggesting that some MNCs are electrotonically coupled. Both excitatory and inhibitory postsynaptic potentials have been evoked with extracellular stimulation. Therefore, action potentials, synaptic potentials, burst discharges, and probably electrotonic coupling have been found with intracellular recording in mammalian neuroendocrine cells. Future studies with intracellular recording and staining followed by immunohistochemical identification of cells should provide significant new information on the membrane physiology and synaptic pharmacology of vasopressinergic and oxytocinergic cells.  相似文献   

11.
Chemical synaptic transmission is the mechanism for fast, excitation-coupled information transfer between neurons. Previous work in larval Drosophila has shown that transmission at synaptic boutons is protected by heat shock exposure from subsequent thermal stress through pre- and postsynaptic modifications. This protective effect has been, at least partially, ascribed to an up-regulation in the inducible heat shock protein, hsp70. Effects of hsp70 are correlated with changes to intracellular calcium handling, and the dynamics of intracellular calcium regulate synaptic transmission. Consistent with such a relationship, synaptic plasticity increases at locust neuromuscular junctions following heat shock, suggesting an effect of heat shock on residual presynaptic calcium. Intracellular recording from single abdominal muscle fibers of Drosophila larvae showed that prior heat shock imparts thermoprotection by increasing the upper temperature limit for synaptic transmission. Heat shock exposure enhances short-term synaptic plasticity and increases its thermosensitivity. Increasing extracellular calcium levels eliminates the physiological differences between control and heat shock preparations; excess calcium itself induces thermoprotection at elevated concentrations. These data support the hypothesis that stress-induced neuroprotection at the nerve terminal acts, at least partially, through an alteration to the physiological effects of residual presynaptic calcium.  相似文献   

12.
Cerebellar Purkinje neurons maintain high firing rates but their synaptic terminals depress only moderately, raising the question of how vesicle depletion is minimized. To identify mechanisms that limit synaptic depression, we evoked 100 Hz trains of GABAergic inhibitory postsynaptic currents (IPSCs) in cerebellar nuclear neurons by stimulating Purkinje axons in mouse brain slices. The paired-pulse ratio (IPSC(2)/IPSC(1)) of the total IPSC was approximately 1 and the steady-state ratio (IPSC(20)/IPSC(1)) was approximately 0.5, suggesting a high response probability of postsynaptic receptors, without an unusually high release probability. Three-dimensional electron microscopic reconstructions of Purkinje boutons revealed multiple active zones without intervening transporters, suggestive of "spillover"-mediated transmission. Simulations of boutons with 10-16 release sites, in which transmitter from any site can reach all receptors opposite the bouton, replicated multiple-pulse depression during normal, high, and low presynaptic Ca influx. These results suggest that release from multiple-site boutons limits depletion-based depression, permitting prolonged, high-frequency inhibition at corticonuclear synapses.  相似文献   

13.
Synaptic adhesion molecules, which coordinately control structural and functional changes at both sides of synapses, are important for synaptogenesis and synaptic plasticity. Because they physically form homophilic or heterophilic adhesions across synaptic junctions, these molecules can initiate transsynaptic communication in both anterograde and retrograde directions. Using optical imaging approaches, we investigated whether an increase in postsynaptic N‐cadherin could correspondingly alter the function of connected presynaptic terminals. Postsynaptic expression of β‐catenin Y654F, a phosphorylation‐defective form with enhanced binding to N‐cadherin, is sufficient to increase postsynaptic surface levels of N‐cadherin and consequently promote presynaptic reorganizations. Such reorganizations include increases in the densities of the synaptic vesicle protein, Synaptotagmin 1 and the active zone scaffold protein, Bassoon, the number of active boutons and the size of the total recycling vesicle pool. In contrast, synaptic vesicle turnover is significantly impaired, preventing the exchange of synaptic vesicles with adjacent boutons. Together, N‐cadherin‐mediated retrograde signaling, governed by phosphoregulation of postsynaptic β‐catenin Y654, coordinately modulates presynaptic vesicle dynamics to enhance synaptic communication in mature neurons. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 61–74, 2017  相似文献   

14.
Fetal or early postnatal brain tissue can be cultured in viable and healthy condition for several weeks with development and preservation of the basic cellular and connective organization as so-called organotypic brain slice cultures. Here we demonstrate and describe how it is possible to establish such hippocampal rat brain slice cultures on biocompatible silicon-based chips with arrays of electrodes with a histological organization comparable to that of conventional brain slice cultures grown by the roller drum technique and on semiporous membranes. Intracellular and extracellular recordings from neurons in the slice cultures show that the electroresponsive properties of the neurons and synaptic circuitry are in accordance with those described for cells in acutely prepared slices of the adult rat hippocampus. Based on the recordings and the possibilities of stimulating the cultured cells through the electrode arrays it is anticipated that the setup eventually will allow long-term studies of defined neuronal networks and provide valuable information on both normal and neurotoxicological and neuropathological conditions.  相似文献   

15.
Free radicals and active oxygen compounds are implicated in brain ischemia and head trauma. Previous studies have shown that free radicals, generated by radiation and through the Fenton reaction, produce both synaptic and postsynaptic damage in the hippocampal brain slice. To evaluate the contribution of oxidation to the observed damage, the actions of the oxidants, chloramine-T and N-chlorosuccinimide (NCS), were studied on electrophysiological responses in the hippocampal slice isolated from the brains of guinea pigs. Electrical stimulation of afferents to neurons of the CA1 region of hippocampus evoked a population postsynaptic potential (population PSP) in the dendritic layer and a population spike in the cell body layer. Chloramine-T (25-500 microM) and NCS (750-4000 microM) decreased the population spike in a dose-dependent manner (ED50 congruent to 125 microM and 1100 microM, respectively). Input/output curves revealed that both the population PSP were significantly reduced with both oxidants; but, the ability of the population PSP to produce a population spike was not impaired. These studies suggest that oxidation reactions can account for the synaptic component of the damage produced by free radicals but can not account for the postsynaptic effects.  相似文献   

16.
Synapses are highly specialized structures designed to guarantee precise and efficient communication between neurons and their target cells. Molecules of the extracellular matrix have an instructive role in the formation of the neuromuscular junction, the best-characterized synapse. In this review, the molecular mechanisms underlying these instructive signals will be discussed with particular emphasis on the receptors involved. Additionally, recent evidence for the involvement of specific adhesion complexes in the formation and modulation of synapses in the central nervous system will be reviewed. Synapses are specialized junctions between neurons and their target cells where information is transferred from the pre- to the postsynaptic cell. At most vertebrate synapses, this transfer is accomplished by the release of a specific neurotransmitter from the presynaptic nerve terminal. The release of neurotransmitter is initiated by the action potential and the subsequent influx of Ca(2+) into the presynaptic nerve terminal. This results in the rapid fusion of vesicles with the nerve membrane and the release of the neurotransmitter into the synaptic cleft. The neurotransmitter then diffuses across the cleft and binds to specific postsynaptic receptors, resulting in a change in the membrane potential of the postsynaptic cell. This can result in the generation of an action potential. The high precision of synaptic transmission requires that pre- and postsynaptic structures are both highly organized and in juxtaposition to each other. In addition, alterations in synaptic transmission are the basis of learning and memory and are likely to be accompanied by the remodeling of synaptic structures (Toni et al., 1999). Thus, the study of how synapses are formed during development is also of relevance for the understanding of the cellular and molecular processes involved in learning and memory. This review focuses on the molecular mechanisms involved in the formation and the function of synapses.  相似文献   

17.
In vivo simultaneous tracing and Ca(2+) imaging of local neuronal circuits   总被引:4,自引:0,他引:4  
A central question about the brain is how information is processed by large populations of neurons embedded in intricate local networks. Answering this question requires not only monitoring functional dynamics of many neurons simultaneously, but also interpreting such activity patterns in the context of neuronal circuitry. Here, we introduce a versatile approach for loading Ca(2+) indicators in vivo by local electroporation. With this method, Ca(2+) imaging can be performed both at neuron population level and with exquisite subcellular resolution down to dendritic spines and axon boutons. This enabled mitral cell odor-evoked ensemble activity to be analyzed simultaneously with revealing their specific connectivity to different glomeruli. Colabeling of Purkinje cell dendrites and intersecting parallel fibers allowed Ca(2+) imaging of both presynaptic boutons and postsynaptic dendrites. This approach thus provides an unprecedented capability for in vivo visualizing active cell ensembles and tracing their underlying local neuronal circuits.  相似文献   

18.
Li J  Erisir A  Cline H 《Neuron》2011,69(2):273-286
Dendrites, axons, and synapses are dynamic during circuit development; however, changes in microcircuit connections as branches stabilize have not been directly demonstrated. By combining in?vivo time-lapse imaging of Xenopus tectal neurons with electron microscope reconstructions of imaged neurons, we report the distribution and ultrastructure of synapses on individual vertebrate neurons and relate these synaptic properties to dynamics in dendritic and axonal arbor structure over hours or?days of imaging. Dynamic dendrites have a high density of immature synapses, whereas stable dendrites have sparser, mature synapses. Axons initiate contacts from multisynapse boutons on stable branches. Connections are refined by decreasing convergence from multiple inputs to postsynaptic dendrites and by decreasing divergence from multisynapse boutons to postsynaptic sites. Visual deprivation or NMDAR antagonists decreased synapse maturation and elimination, suggesting that coactive input activity promotes microcircuit development by concurrently regulating synapse elimination and maturation of remaining contacts.  相似文献   

19.
Dynamic alteration of the synaptic strength is one of the most important processes occurring in the nervous system. Combination of electrophysiology, confocal imaging and molecular biology led to significant advances in this research field. Yet, a progress in this area, in particular in studies of changes in the quantal behavior of central synapses and impact of glial cells on individual synapses, is hampered by technical difficulties of resolving small quantal synaptic currents. In this paper we will show how the technique of non-enzymatic vibro-dissociation, which enables to isolate living neurons avoiding artifacts of cell culture and preserving functional synapse, can be used to obtain a valuable information on fine details and mechanisms of synaptic plasticity. In particular, we will describe our recent results on Ca2+-dependent modulation of the postsynaptic AMPA and NMDA receptors in the individual synaptic boutons.  相似文献   

20.
An electron microscope study of goldfish Mauthner cells is reported.1 The cell is covered by a synaptic bed ~ 5 µ thick containing unusual amounts of extracellular matrix material in which synapses and clear glia processes are implanted. The preterminal synaptic neurites are closely invested by an interwoven layer of filament-containing satellite cell processes. The axoplasm of the club endings contains oriented mitochondria, neurofilaments, neurotubules, and relatively few synaptic vesicles. That of the boutons terminaux contains many unoriented mitochondria and is packed with synaptic vesicles and some glycogen but no neurofilaments or neurotubules. The bare axons of club endings are surrounded by a moderately abundant layer of matrix material. The synaptic membrane complex (SMC) in cross-section shows segments of closure of the synaptic cleft ~ 0.2 to 0.5 µ long. These alternate with desmosome-like regions of about the same length in which the gap widens to ~ 150 A and contains a condensed central stratum of dense material. Here, there are also accumulations of dense material in pre- and postsynaptic neuroplasm. The boutons show no such differentiation and the extracellular matrix is largely excluded around them. The axon cap is a dense neuropil of interwoven neural and glial elements free of myelin. It is covered by a closely packed layer of glia cells. The findings are interpreted as suggestive of electrical transmission in the club endings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号