首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cyanobacterium, Synechocystis sp. PCC 6803, was the first photosynthetic organism whose genome sequence was determined in 1996 (Kazusa strain). It thus plays an important role in basic research on the mechanism, evolution, and molecular genetics of the photosynthetic machinery. There are many substrains or laboratory strains derived from the original Berkeley strain including glucose-tolerant (GT) strains. To establish reliable genomic sequence data of this cyanobacterium, we performed resequencing of the genomes of three substrains (GT-I, PCC-P, and PCC-N) and compared the data obtained with those of the original Kazusa strain stored in the public database. We found that each substrain has sequence differences some of which are likely to reflect specific mutations that may contribute to its altered phenotype. Our resequence data of the PCC substrains along with the proposed corrections/refinements of the sequence data for the Kazusa strain and its derivatives are expected to contribute to investigations of the evolutionary events in the photosynthetic and related systems that have occurred in Synechocystis as well as in other cyanobacteria.  相似文献   

2.
3.
This study focuses on Ultra Violet stress (UVS) gene product which is a UV stress induced protein from cyanobacteria, Synechocystis PCC 6803. Three dimensional structural modeling of target UVS protein was carried out by homology modeling method. 3F2I pdb from Nostoc sp. PCC 7120 was selected as a suitable template protein structure. Ultimately, the detection of active binding regions was carried out for characterization of functional sites in modeled UV-B stress protein. The top five probable ligand binding sites were predicted and the common binding residues between target and template protein was analyzed. It has been validated for the first time that modeled UVS protein structure from Synechocystis PCC 6803 was structurally and functionally similar to well characterized UVS protein of another cyanobacterial species, Nostoc sp PCC 7120 because of having same structural motif and fold with similar protein topology and function. Investigations revealed that UVS protein from Synechocystis sp. might play significant role during ultraviolet resistance. Thus, it could be a potential biological source for remediation for UV induced stress.  相似文献   

4.
Synechocystis sp. PCC 6803 is a widely used model cyanobacterium for studying photosynthesis, phototaxis, the production of biofuels and many other aspects. Here we present a re-sequencing study of the genome and seven plasmids of one of the most widely used Synechocystis sp. PCC 6803 substrains, the glucose tolerant and motile Moscow or ‘PCC-M’ strain, revealing considerable evidence for recent microevolution. Seven single nucleotide polymorphisms (SNPs) specifically shared between ‘PCC-M’ and the ‘PCC-N and PCC-P’ substrains indicate that ‘PCC-M’ belongs to the ‘PCC’ group of motile strains. The identified indels and SNPs in ‘PCC-M’ are likely to affect glucose tolerance, motility, phage resistance, certain stress responses as well as functions in the primary metabolism, potentially relevant for the synthesis of alkanes. Three SNPs in intergenic regions could affect the promoter activities of two protein-coding genes and one cis-antisense RNA. Two deletions in ‘PCC-M’ affect parts of clustered regularly interspaced short palindrome repeats-associated spacer-repeat regions on plasmid pSYSA, in one case by an unusual recombination between spacer sequences.  相似文献   

5.
Novel Cyanobacterial Biosensor for Detection of Herbicides   总被引:2,自引:0,他引:2       下载免费PDF全文
The aim of this work was to generate a cyanobacterial biosensor that could be used to detect herbicides and other environmental pollutants. A representative freshwater cyanobacterium, Synechocystis sp. strain PCC6803, was chromosomally marked with the luciferase gene luc (from the firefly Photinus pyralis) to create a novel bioluminescent cyanobacterial strain. Successful expression of the luc gene during growth of Synechocystis sp. strain PCC6803 cultures was characterized by measuring optical density and bioluminescence. Bioluminescence was optimized with regard to uptake of the luciferase substrate, luciferin, and the physiology of the cyanobacterium. Bioassays demonstrated that a novel luminescent cyanobacterial biosensor has been developed which responded to a range of compounds including different herbicide types and other toxins. This biosensor is expected to provide new opportunities for the rapid screening of environmental samples or for the investigation of potential environmental damage.  相似文献   

6.
The photosynthetic growth of Synechocystis sp. PCC6803 ceased upon expression of Rhodobacter sphaeroides chlorophyllide a reductase (COR). However, an increase in cytosolic superoxide dismutase level in the recombinant Synechocystis sp. PCC6803 completely reversed the growth cessation. This demonstrates that COR generates superoxide in Synechocystis sp. PCC6803. Considering the dissolved oxygen (DO) level suitable for COR, the intracellular DO of this oxygenic photosynthetic cell appears to be low enough to support COR-mediated superoxide generation. The growth arrest of Synechocystis sp. PCC6803 by COR may give an insight into the evolutionary path from bacteriochlorophyll a biosynthetic pathway to chlorophyll a, which bypasses COR reaction.  相似文献   

7.
8.
9.
Synechocystis sp. PCC 6803 PG is a cyanobacterial strain capable of synthesizing 1,2-propanediol from carbon dioxide (CO2) via a heterologous three-step pathway and a methylglyoxal synthase (MGS) originating from Escherichia coli as an initial enzyme. The production window is restricted to the late growth and stationary phase and is apparently coupled to glycogen turnover. To understand the underlying principle of the carbon partitioning between the Calvin-Benson-Bassham (CBB) cycle and glycogen in the context of 1,2-propanediol production, experiments utilizing 13C labeled CO2 have been conducted. Carbon fluxes and partitioning between biomass, storage compounds, and product have been monitored under permanent illumination as well as under dark conditions. About one-quarter of the carbon incorporated into 1,2-propanediol originated from glycogen, while the rest was derived from CO2 fixed in the CBB cycle during product formation. Furthermore, 1,2-propanediol synthesis was depending on the availability of photosynthetic active radiation and glycogen catabolism. We postulate that the regulation of the MGS from E. coli conflicts with the heterologous reactions leading to 1,2-propanediol in Synechocystis sp. PCC 6803 PG. Additionally, homology comparison of the genomic sequence to genes encoding for the methylglyoxal bypass in E. coli suggested the existence of such a pathway also in Synechocystis sp. PCC 6803. These findings are critical for all heterologous pathways coupled to the CBB cycle intermediate dihydroxyacetone phosphate via a MGS and reveal possible engineering targets for rational strain optimization.  相似文献   

10.
The activities of uptake of thirteen 14C-labeled amino acids were determined in nine cyanobacteria, including the unicellular strains Synechococcus sp. strain PCC 7942 and Synechocystis sp. strain PCC 6803; the filamentous strain Pseudanabaena sp. strain PCC 6903, and the filamentous, heterocyst-forming strains Anabaena sp. strains PCC 7120 and PCC 7937; Nostoc sp. strains PCC 7413 and PCC 7107; Calothrix sp. strain PCC 7601 (which is a mutant unable to develop heterocysts); and Fischerella muscicola UTEX 1829. Amino acid transport mutants, selected as mutants resistant to some amino acid analogs, were isolated from the Anabaena, Nostoc, Calothrix, and Pseudanabaena strains. All of the tested cyanobacteria bear at least a neutral amino acid transport system, and some strains also bear transport systems specific for basic or acidic amino acids. Two genes, natA and natB, encoding elements (conserved component, NatA, and periplasmic binding protein, NatB) of an ABC-type permease for neutral amino acids were identified by insertional mutagenesis of strain PCC 6803 open reading frames from the recently published genomic DNA sequence of this cyanobacterium. DNA sequences homologous to natA and natB from strain PCC 6803 were detected by hybridization in eight cyanobacterial strains tested. Mutants unable to transport neutral amino acids, including natA and natB insertional mutants, accumulated in the extracellular medium a set of amino acids that always included Ala, Val, Phe, Ile, and Leu. A general role for a cyanobacterial neutral amino acid permease in recapture of hydrophobic amino acids leaked from the cells is suggested.  相似文献   

11.
12.
13.
The cyanobacterium Synechocystis sp. PCC 6803 was the first phototrophic organism to be fully sequenced. The genomic sequence has revealed the structure of the genome and its gene constituents (3167 genes), as well as the relative map positions of each gene. The functions of nearly half of the genes has been deduced using similarity searches. The genome sequence has also allowed for the implementation of systematic strategies to study gene function and the mechanisms of gene regulation on a genome-wide level. Two genome databases, CyanoBase and CyanoMutants, have been established and act as a central repository for information on gene structure and gene function, respectively. As a result of the genome sequencing and the establishment of these databases, Synechocystis sp. PCC 6803 provides an extremely versatile and easy model to study the genetic systems of photosynthetic organisms. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Although type IV pilus has been implicated in the phototactic motility of some unicellular cyanobacteria, its regulatory mechanism and the effect of environmental factors on motility are still unknown. Equally important is the ability of cyanobacterial cells to anchor themselves to an environment that is conducive for survival. We compared the motility of a newly isolated unicellular brackish cyanobacterium, Synechocystis sp. UNIWG, with the morphologically and phylogenetically similar freshwater cyanobacterium Synechocystis sp. PCC6803 under different environmental conditions. The phototactic motility of Synechocystis sp. UNIWG on semisolid BG‐11 medium with various concentrations of nitrogen source was significantly faster than that of Synechocystis PCC6803. Interestingly, the cell surface of Synechocystis sp. UNIWG showed the presence of rigid spicules when grown in liquid BG‐11, a phenomenon that was absent in Synechocystis PCC6803. Negative staining of Synechocystis sp. UNIWG revealed the presence of two distinct pilus morphotypes, which resembled type IV pili and thin pili of Synechocystis PCC6803. This finding suggested a similar pattern of phototactic motility in both strains. However, the rigid spicules on Synechocystis sp. UNIWG seem to be more of a hindrance during type IV motility. It was determined that the spicules were degraded when the cells moved, such as under prolonged darkness and/or depletion of nitrogen source, indicating that the function of the spicules is to attach the cell to an environment that is conducive for its survival. Thus, Synechocystis sp. UNIWG shows phototaxis regulation that is more complex than Synechocystis PCC6803.  相似文献   

15.
The widely distributed members of the Deg/HtrA protease family play an important role in the proteolysis of misfolded and damaged proteins. Here we show that the Deg protease rHhoA is able to degrade PsbO, the extrinsic protein of the Photosystem II (PSII) oxygen-evolving complex in Synechocystis sp. PCC 6803 and in spinach. PsbO is known to be stable in its oxidized form, but after reduction by thioredoxin it became a substrate for recombinant HhoA (rHhoA). rHhoA cleaved reduced eukaryotic (specifically, spinach) PsbO at defined sites and created distinct PsbO fragments that were not further degraded. As for the corresponding prokaryotic substrate (reduced PsbO of Synechocystis sp. PCC 6803), no PsbO fragments were observed. Assembly to PSII protected PsbO from degradation. For Synechocystis sp. PCC 6803, our results show that HhoA, HhoB, and HtrA are localized in the periplasma and/or at the thylakoid membrane. In agreement with the idea that PsbO could be a physiological substrate for Deg proteases, part of the cellular fraction of the three Deg proteases of Synechocystis sp. PCC 6803 (HhoA, HhoB, and HtrA) was detected in the PSII-enriched membrane fraction.  相似文献   

16.
RSF1010-derived plasmids are most efficiently transferred by conjugation to the unicellular cyanobacteriaSynechocystis strains sp. PCC6803 and PCC6714 andSynechococcus strains sp. PCC7942 and PCC6301, where they replicate autonomously, even though they contain no cyanobacterial DNA. These results are especially important in the case of the facultative heterotrophic strainSynechocystis PCC6714, which is not transformable [Mol Gen Genet 204:185, 1986]  相似文献   

17.
《Process Biochemistry》2014,49(12):2071-2077
Lactate is an important industrial material with numerous potential applications, and its production from carbon dioxide is very attractive. d-Lactate is an essential monomer for production of thermostable polylactide. The photoautotrophic prokaryote cyanobacterium Synechocystis sp. PCC 6803 represents a promising host for biosynthesis of d-lactate from CO2 as it only contains d-lactate dehydrogenase. The production of d-lactate from CO2 by an engineered strain of Synechocystis sp. PCC 6803 with overexpressing d-lactate dehydrogenase and a soluble transhydrogenase has been reported recently. Here, we report an alternative engineering strategy to produce d-lactate from CO2. This strategy involves blocking two competitive pathways, the native poly-3-hydroxybutyrate and acetate pathways from the acetyl-CoA node, and introducing a more efficient d-lactate dehydrogenase into Synechocystis sp. PCC 6803. The engineered strain of Synechocystis sp. PCC 6803 was capable of producing 1.06 g/L of d-lactate from CO2. This alternative strategy for the production of optically pure d-lactate could also be used to produce other acetyl-CoA-derived chemicals from CO2 by using engineered cyanobacteria.  相似文献   

18.
19.
An isolated 25 kDa protein of Synechocystis sp. PCC 6803 was N-terminally sequenced and assigned to a protein encoded by the ORF slr0924. This ORF shows a certain degree of sequence similarity to a subunit from the protein Translocon at the Inner envelope of pea Chloroplasts (Tic22). The deduced amino acid sequence of Slr0924 has a N-terminal extension, that contains two possible translational start points and two possible cleavage sites for leader peptidases. Immunostaining with an antibody raised to the over-produced protein revealed two cross-reacting forms, which probably correspond to a larger intermediate and the mature protein. Immunogold labelling of thin sections showed that the protein is located mainly in the thylakoid region. This result was verified by thylakoid membrane fractionation indicating that Slr0924 is a lumenal protein. The slr0924 gene product is essential for the viability of Synechocystis sp. PCC 6803 as shown by interposon mutagenesis. The merodiploid strain showed reduced photosynthetic activity compared to the wild-type. Furthermore, growth of the merodiploid strain was found to be completely inhibited after cultivation with glucose. Accordingly, the amount of the slr0924 gene product was regulated by glucose and light intensities in wild-type cells. The potential function of the protein in Synechocystis sp. PCC 6803 will be discussed.  相似文献   

20.
Insertional transposon mutations in the sll0804 and slr1306 genes were found to lead to a loss of optimal photoautotrophy in the cyanobacterium Synechocystis sp. strain PCC 6803 grown under ambient CO2 concentrations (350 ppm). Mutants containing these insertions (4BA2 and 3ZA12, respectively) could grow photoheterotrophically on glucose or photoautotrophically at elevated CO2 concentrations (50,000 ppm). Both of these mutants exhibited an impaired affinity for inorganic carbon. Consequently, the Sll0804 and Slr1306 proteins appear to be putative components of the carbon-concentrating mechanism in Synechocystis sp. strain PCC 6803.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号