首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kaposi sarcoma (KS) tumors often contain a wild-type p53. However, the function of this tumor suppressor in KS tumor cells is inhibited by both MDM2 and latent nuclear antigen (LANA) of Kaposi sarcoma-associated herpes virus (KSHV). Here, we report that MDM2 antagonist Nutlin-3 efficiently reactivates p53 in telomerase-immortalized human umbilical vein endothelial cells (TIVE) that had been malignantly transformed by KSHV as well as in KS tumor cells. Reactivation of p53 results in a G1 cell cycle arrest, leading to inhibition of proliferation and apoptosis. Nutlin-3 inhibits the growth of “KS-like” tumors resulting from xenografted TIVE-KSHV cells in nude mice. In addition, Nutlin-3 strongly inhibits expression of the pro-angiogenic and pro-inflammatory cytokine angiopoietin-2 (Ang-2). It also disrupts viral latency by inducing expression of KSHV lytic genes. these results suggest that Nutlin-3 might serve as a novel therapy for KS.Key words: Kaposi sarcoma (KS), nutlin-3, p53, cell cycle arrest, apoptosis, angiopoietin-2  相似文献   

2.
The Epstein-Barr virus (EBV) is associated with various lymphoproliferative disorders and lymphomas. We have previously demonstrated that treating wild-type TP53-expressing B cell lines with the TP53 pathway activator nutlin-3 induced apoptosis in EBV-negative and EBV-positive latency I cells whereas EBV-positive latency III cells remained much more apoptosis-resistant. Here, we report a constitutively high level of autophagy in these resistant cells which express high levels of the proautophagic protein BECN1/Beclin 1 based, at least in part, on the activation of the NFKB signaling pathway by the viral protein LMP1. Following treatment with nutlin-3, several autophagy-stimulating genes were upregulated both in EBV-negative and EBV-positive latency III cells. However the process of autophagy was only triggered in the latter and was associated with an upregulation of SESN1/sestrin 1 and inhibition of MTOR more rapid than in EBV-negative cells. A treatment with chloroquine, an inhibitor of autophagy, potentiated the apoptotic effect of nutlin-3, particularly in those EBV-positive cells which were resistant to apoptosis induced by nutlin-3 alone, thereby showing that autophagy participates in this resistant phenotype. Finally, using immunohistochemical staining, clinical samples from various B cell lymphoproliferations with the EBV-positive latency II or III phenotype were found to harbor a constitutively active autophagy.  相似文献   

3.
Resveratrol (3,4',5-trihydroxy-trans-stilbene), a polyphenolic natural product, shows chemopreventive properties against several cancers, heart diseases, inflammation, and viral infections. Epstein Barr virus (EBV), a γ-herpesvirus, contributes to the development of several human cancers including Burkitt's lymphoma (BL). In this study, we asked whether treatment with resveratrol would affect the viability of EBV-positive BL cells displaying different forms of latency. We report here that resveratrol, regardless of EBV status, induces caspase-dependent apoptosis by arresting cell-cycle progression in G(1) phase. However, resveratrol strongly induced apoptosis in EBV(-) and latency I EBV(+) cells, whereas latency II and latency III EBV(+) BL cells showed a survival advantage that increased with the extent of the pattern of viral gene expression. Resveratrol-induced cell-cycle arrest and apoptosis occurred in association with induction of p38 MAPK phosphorylation and suppression of ERK1/2 signaling pathway. Moreover, NF-κB DNA-binding activity was inhibited in all BL lines except EBV(+) latency III cells. LMP1 oncogene, which is expressed in latency III phenotype, is involved with the higher resistance to the antiproliferative effect of resveratrol because siRNA-mediated inhibition of LMP1 greatly increased the sensitivity of latency III BL cells as well as that of lymphoblastoid cell lines to the polyphenol. We propose that a combined resveratrol/siRNA strategy may be a novel approach for the treatment of EBV-associated B-cell malignancies in which the viral pattern of gene expression has been defined.  相似文献   

4.
The BCR/ABL tyrosine kinase inhibitor imatinib is highly effective for treatment of chronic myeloid leukemia (CML) and Philadelphia-chromosome positive (Ph+) acute lymphoblastic leukemia (ALL). However, relapses with emerging imatinib-resistance mutations in the BCR/ABL kinase domain pose a significant problem. Here, we demonstrate that nutlin-3, an inhibitor of Mdm2, inhibits proliferation and induces apoptosis more effectively in BCR/ABL-driven Ton.B210 cells than in those driven by IL-3. Moreover, nutlin-3 drastically enhanced imatinib-induced apoptosis in a p53-dependent manner in various BCR/ABL-expressing cells, which included primary leukemic cells from patients with CML blast crisis or Ph+ ALL and cells expressing the imatinib-resistant E255K BCR/ABL mutant. Nutlin-3 and imatinib synergistically induced Bax activation, mitochondrial membrane depolarization, and caspase-3 cleavage leading to caspase-dependent apoptosis, which was inhibited by overexpression of Bcl-XL. Imatinib did not significantly affect the nutlin-3-induced expression of p53 but abrogated that of p21. Furthermore, activation of Bax as well as caspase-3 induced by combined treatment with imatinib and nutlin-3 was observed preferentially in cells expressing p21 at reduced levels. The present study indicates that combined treatment with nutlin-3 and imatinib activates p53 without inducing p21 and synergistically activates Bax-mediated intrinsic mitochondrial pathway to induce apoptosis in BCR/ABL-expressing cells.  相似文献   

5.
6.
Ca2+ transfer from endoplasmic reticulum (ER) to mitochondria can trigger apoptotic pathways by inducing release of mitochondrial pro-apoptotic factors. Three different types of inositol 1,4,5-trisphosphate receptor (IP3R) serve to discharge Ca2+ from ER, but possess some peculiarities, especially in apoptosis induction. The anti-apoptotic protein Akt can phosphorylate all IP3R isoforms and protect cells from apoptosis, reducing ER Ca2+ release. However, it has not been elucidated which IP3R subtypes mediate these effects. Here, we show that Akt activation in COS7 cells, which lack of IP3R I, strongly suppresses IP3-mediated Ca2+ release and apoptosis. Conversely, in SH-SY 5Y cells, which are type III-deficient, Akt is unable to modulate ER Ca2+ flux, losing its anti-apoptotic activity. In SH-SY 5Y-expressing subtype III, Akt recovers its protective function on cell death, by reduction of Ca2+ release. Moreover, regulating Ca2+ flux to mitochondria, Akt maintains the mitochondrial integrity and delays the trigger of apoptosis, in a type III-dependent mechanism. These results demonstrate a specific activity of Akt on IP3R III, leading to diminished Ca2+ transfer to mitochondria and protection from apoptosis, suggesting an additional level of cell death regulation mediated by Akt.  相似文献   

7.
Dihydromyricetin (DHM) is a major active ingredient of flavonoids compounds. It exhibited anticancer activity and induced apoptosis in human hepatocellular carcinoma HepG2 cells according to our previous data. In this study, we investigated whether p53 is involved in DHM-triggered viability inhibition and apoptosis induction in cancer cells. MTT [3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] assay was employed to evaluate the viability of HepG2 cells after DHM treatment. Meanwhile, p53 small interfering RNA (siRNA) was adopted to silence p53 expression. Protein level of p53 and Bax/Bcl-2 were evaluated by western blot analysis. Cell counting assay showed that DHM inhibited HepG2 cell growth effectively in a time- and dose-dependent manner. P53 expression was significantly increased after DHM treatment, whereas Bcl-2 was reduced potently. Furthermore, after co-treatment with Pifithrin-α (PFT-α, p53 inhibitor), Bcl-2 expression was reversed. The expression of Bax was no significant change, which was also observed after p53 silence. These findings defined and supported a novel function that DHM could induce human hepatocellular carcinoma HepG2 cells apoptosis by up-regulating Bax/Bcl-2 expression via p53 signal pathway.  相似文献   

8.
The overall effect of brain zinc (Zn2+) in the progression and development of Alzheimer''s disease (AD) is still not completely understood. Although an excess of Zn2+ can exacerbate the pathological features of AD, a deficit of Zn2+ intake has also been shown to increase the volume of amyloid plaques in AD transgenic mice. In this study, we investigated the effect of dietary Zn2+ supplementation (30 p.p.m.) in a transgenic mouse model of AD, the 3xTg-AD, that expresses both β amyloid (Aβ)- and tau-dependent pathology. We found that Zn2+ supplementation greatly delays hippocampal-dependent memory deficits and strongly reduces both Aβ and tau pathology in the hippocampus. We also evaluated signs of mitochondrial dysfunction and found that Zn2+ supplementation prevents the age-dependent respiratory deficits we observed in untreated 3xTg-AD mice. Finally, we found that Zn2+ supplementation greatly increases the levels of brain-derived neurotrophic factor (BDNF) of treated 3xTg-AD mice. In summary, our data support the idea that controlling the brain Zn2+ homeostasis may be beneficial in the treatment of AD.  相似文献   

9.
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults. Despite concerted efforts to improve current therapies and develop novel clinical approaches, patient survival remains poor. As such, increasing attention has focused on developing new therapeutic strategies that specifically target the apoptotic pathway in order to improve treatment responses. Recently, nutlins, small-molecule antagonists of MDM2, have been developed to inhibit p53-MDM2 interaction and activate p53 signaling in cancer cells. Glioma cell lines and primary cultured glioblastoma cells were treated with nutlin-3a. Nutlin-3a induced p53-dependent G1- and G2-M cell cycle arrest and apoptosis in glioma cell lines with normal TP53 status. In addition, nutlin-arrested glioma cells show morphological features of senescence and persistent induction of p21 protein. Furthermore, senescence induced by nutlin-3a might be depending on mTOR pathway activity. In wild-type TP53 primary cultured cells, exposure to nutlin-3a resulted in variable degrees of apoptosis as well as cellular features of senescence. Nutlin-3a-induced apoptosis and senescence were firmly dependent on the presence of functional p53, as revealed by the fact that glioblastoma cells with knockdown p53 with specific siRNA, or cells with mutated or functionally impaired p53 pathway, were completely insensitive to the drug. Finally, we also found that nutlin-3a increased response of glioma cells to radiation therapy. The results provide a basis for the rational use of MDM2 antagonists as a novel treatment option for glioblastoma patients.  相似文献   

10.
To clarify the signaling pathways of oxidative stress-induced apoptosis in bovine aortic endothelial cells (BAEC), we treated cells with 1 mM H 2 O 2 and investigated the roles of protein kinase C δ(PKC δ) and Ca 2+ in the accumulation of p53 associated with apoptosis. The treatment of cells with H 2 O 2 caused the accumulation of p53, which was inhibited by rottlerin (a PKC δinhibitor) but not by BAPTA-AM (an intracellular Ca 2+ chelator). PKC δitself was activated through the phosphorylation at tyrosine residues. H 2 O 2 induced the release of cytochrome c and the activation of caspases 3 and 9, and these apoptotic signals were inhibited by rottlerin and BAPTA-AM. These results suggest that PKC δcontributes to the accumulation of p53 and that Ca 2+ plays a role in downstream signals of p53 leading to apoptosis in H 2 O 2 -treated BAEC.  相似文献   

11.
Posttransplant lymphoproliferative disorders (PTLD) represent a spectrum of lymphoid diseases complicating the clinical course of transplant recipients. Most PTLD are Epstein-Barr virus (EBV) associated with viral latency type III. Several in vitro studies have revealed an interaction between EBV latency proteins and molecules of the apoptosis pathway. Data on human PTLD regarding an association between Bcl-2 family proteins and EBV are scarce. We analyzed 60 primary PTLD for expression of 8 anti- (Bcl-2, Bcl-XL, and Mcl-1) and proapoptotic proteins (Bak and Bax), the so-called BH3-only proteins (Bad, Bid, Bim, and Puma), as well as the apoptosis effector cleaved PARP by immunohistochemistry. Bim and cleaved PARP were both significantly (p = 0.001 and p = 5.251e-6) downregulated in EBV-positive compared to EBV-negative PTLD [Bim: 6/40 (15%), cleaved PARP: 10/43 (23%), vs. Bim: 13/16 (81%), cleaved PARP: 12/17 (71%)]. Additionally, we observed a tendency toward increased Bcl-2 protein expression (p = 0.24) in EBV-positive PTLD. Hence, we provide evidence of a distinct regulation of Bcl-2 family proteins in EBV-positive versus negative PTLD. The low-expression pattern of the proapoptotic proteins Bim and cleaved PARP together with the high-expression pattern of the antiapoptotic protein Bcl-2 by trend in EBV-positive tumor cells suggests disruption of the apoptotic pathway by EBV in PTLD, promoting survival signals in the host cells.  相似文献   

12.
Wild-type p53 has a major role in the response and execution of apoptosis after chemotherapy in many cancers. Although high levels of wild-type p53 and hardly any TP53 mutations are found in testicular cancer (TC), chemotherapy resistance is still observed in a significant subgroup of TC patients. In the present study, we demonstrate that p53 resides in a complex with MDM2 at higher cisplatin concentrations in cisplatin-resistant human TC cells compared with cisplatin-sensitive TC cells. Inhibition of the MDM2–p53 interaction using either Nutlin-3 or MDM2 RNA interference resulted in hyperactivation of the p53 pathway and a strong induction of apoptosis in cisplatin-sensitive and -resistant TC cells. Suppression of wild-type p53 induced resistance to Nutlin-3 in TC cells, demonstrating the key role of p53 for Nutlin-3 sensitivity. More specifically, our results indicate that p53-dependent induction of Fas membrane expression (∼threefold) and enhanced Fas/FasL interactions at the cell surface are important mechanisms of Nutlin-3-induced apoptosis in TC cells. Importantly, an analogous Fas-dependent mechanism of apoptosis upon Nutlin-3 treatment is executed in wild-type p53 expressing Hodgkin lymphoma and acute myeloid leukaemia cell lines. Finally, we demonstrate that Nutlin-3 strongly augmented cisplatin-induced apoptosis and cell kill via the Fas death receptor pathway. This effect is most pronounced in cisplatin-resistant TC cells.  相似文献   

13.
The aim of this study was to find the efficacy of 5-hydroxy 3′,4′,7-trimethoxyflavone (HTMF), a flavonoid compound isolated from the medicinal plant Lippia nodiflora, in inhibiting the proliferation and inducing apoptosis in human breast cancer cell line MCF-7. The anti-proliferative effect of the compound HTMF was confirmed using MTT cytotoxicity assay. Increased apoptotic induction by HTMF was demonstrated by acridine orange/ethidium bromide (AO/EtBr) and Hoechst 33258 staining studies. The phosphatidylserine translocation, an early feature of apoptosis and DNA damage were revealed through AnnexinV-Cy3 staining and comet assay. Moreover, the significant elevation of cellular ROS was observed in the treated cells, as measured by 2,7-diacetyl dichlorofluorescein (DCFH-DA). The mRNA expression studies also supported the effectiveness of HTMF by shifting the Bax:Bcl-2 ratio. The treatment of MCF-7 cells with HTMF encouraged apoptosis through the modulation of apoptotic markers, such as p53, Bcl-2, Bax, and cleaved PARP. In silico molecular docking and dynamics studies with MDM2-p53 protein revealed that HTMF was more potent compound that could inhibit the binding of MDM2 with p53 and, therefore, could trigger apoptosis in cancer cell. Overall, this study brings up scientific evidence for the efficacy of HTMF against MCF-7 breast cancer cells.  相似文献   

14.
15.
Restoring p53 levels through disruption of p53–MDM2 interaction has been proved to be a valuable approach in fighting cancer. We herein report the synthesis and evaluation of eighteen spiroisoxazoline oxindoles derivatives as p53–MDM2 interaction inhibitors. Seven compounds showed an antiproliferative profile superior to the p53–MDM2 interaction inhibitor nutlin-3, and induced cell death by apoptosis. Moreover, proof-of-concept was demonstrated by inhibition of the interaction between p53 and MDM2 in a live-cell bimolecular fluorescence complementation assay.  相似文献   

16.
Inactivation of p53 is present in almost every tumor, and hence, p53-reactivation strategies are an important aspect of cancer therapy. Common mechanisms for p53 loss in cancer include expression of p53-negative regulators such as MDM2, which mediate the degradation of wildtype p53 (p53α), and inactivating mutations in the TP53 gene. Currently, approaches to overcome p53 deficiency in these cancers are limited. Here, using non–small cell lung cancer and glioblastoma multiforme cell line models, we show that two alternatively spliced, functional truncated isoforms of p53 (p53β and p53γ, comprising exons 1 to 9β or 9γ, respectively) and that lack the C-terminal MDM2-binding domain have markedly reduced susceptibility to MDM2-mediated degradation but are highly susceptible to nonsense-mediated decay (NMD), a regulator of aberrant mRNA stability. In cancer cells harboring MDM2 overexpression or TP53 mutations downstream of exon 9, NMD inhibition markedly upregulates p53β and p53γ and restores activation of the p53 pathway. Consistent with p53 pathway activation, NMD inhibition induces tumor suppressive activities such as apoptosis, reduced cell viability, and enhanced tumor radiosensitivity, in a relatively p53-dependent manner. In addition, NMD inhibition also inhibits tumor growth in a MDM2-overexpressing xenograft tumor model. These results identify NMD inhibition as a novel therapeutic strategy for restoration of p53 function in p53-deficient tumors bearing MDM2 overexpression or p53 mutations downstream of exon 9, subgroups that comprise approximately 6% of all cancers.  相似文献   

17.
Total knee arthroplasty is a commonly performed safe procedure and typically executed in severe knee arthritis, but it also triggers ischemia-reperfusion injury (IRI). More recently, microRNAs (miRs) have been reported to play a contributory role in IRI through the key signaling pathway. Hence, the current study aimed to investigate the effect and specific mechanism of microRNA-23b (miR-23b), murine double minute 4 (MDM4), and the p53 signaling pathway in IRI rat models. First, the IRI model was established, and the expression pattern of miR-23b, MDM4, and the p53 signaling pathway-related genes was characterized in cartilaginous tissues. Then, miR-23b mimics or inhibitors were applied for the elevation or the depletion of the miR-23b expression and siRNA-MDM4 for the depletion of the MDM4 expression in the articular chondrocytes. By means of immunohistochemistry, quantitative real-time polymerase chain reaction, and Western blot analysis, IRI rats exhibited increased miR-23b expression, activated p53 signaling pathway, and decreased MDM4 expression. MDM4 was verified as a target gene of miR-23b through. Downregulated miR-23b increased the expression of MDM4, AKT, and Bcl-2, but decreased the expression of p53, p21, and Bax. In addition, a series of cell experiments demonstrated that downregulated miR-23b promoted articular chondrocyte proliferation and cell cycle entry, but inhibited articular chondrocyte apoptosis. The absence of the effects of miR-23b was observed after MDM4 knocked down. Our results indicate that silencing miR-23b could act to attenuate IRI and reduce the apoptosis of articular chondrocytes through inactivation of the p53 signaling pathway by upregulating MDM4, which provide basic therapeutic considerations for a novel target against IRI.  相似文献   

18.
TH Hung  SF Chen  LM Lo  MJ Li  YL Yeh  TT Hsieh 《PloS one》2012,7(7):e40957

Background

Unexplained intrauterine growth restriction (IUGR) may be a consequence of placental insufficiency; however, its etiology is not fully understood. We surmised that defective placentation in IUGR dysregulates cellular bioenergic homeostasis, leading to increased autophagy in the villous trophoblast. The aims of this work were (1) to compare the differences in autophagy, p53 expression, and apoptosis between placentas of women with normal or IUGR pregnancies; (2) to study the effects of hypoxia and the role of p53 in regulating trophoblast autophagy; and (3) to investigate the relationship between autophagy and apoptosis in hypoxic trophoblasts.

Methodology/Principal Findings

Compared with normal pregnant women, women with IUGR had higher placental levels of autophagy-related proteins LC3B-II, beclin-1, and damage-regulated autophagy modulator (DRAM), with increased p53 and caspase-cleaved cytokeratin 18 (M30). Furthermore, cytotrophoblasts cultured under hypoxia (2% oxygen) in the presence or absence of nutlin-3 (a p53 activity stimulator) had higher levels of LC3B-II, DRAM, and M30 proteins and increased Bax mRNA expression compared with controls cultured under standard conditions. In contrast, administration of pifithrin-α (a p53 activity inhibitor) during hypoxia resulted in protein levels that were similar to those of the control groups. Moreover, cytotrophoblasts transfected with LC3B, beclin-1, or DRAM siRNA had higher levels of M30 compared with the controls under hypoxia. However, transfection with Bcl-2 or Bax siRNA did not cause any significant change in the levels of LC3B-II in hypoxic cytotrophoblasts.

Conclusions/Significance

Together, these results suggest that there is a crosstalk between autophagy and apoptosis in IUGR and that p53 plays a pivotal and complex role in regulating trophoblast cell turnover in response to hypoxic stress.  相似文献   

19.
20.
Overexpression of Bcl-2 protein occurs via both t(14;18)-dependent and independent mechanisms and contributes to the survival and chemoresistance of non-Hodgkin lymphomas. HA14–1 is a nonpeptidic organic small molecule, which has been shown to inhibit the interaction of Bcl-2 with Bax, thereby interfering with the antiapoptotic function of Bcl-2. In this study, we sought to determine the in vitro efficacy of HA14–1 as a therapeutic agent for non-Hodgkin lymphomas expressing Bcl-2. Assessment of cell viability demonstrated that HA14–1 induced a dose- (IC50 = 10 μM) and time-dependent growth inhibition of a cell line (SudHL-4) derived from a t(14;18)-positive, Bcl-2-positive, non-Hodgkin lymphoma. HA14–1 effectively induced apoptosis via a caspase 3-mediated pathway but did not affect either the p38 MAPK or p44/42 MAPK pathways. Western blot analyses of Bcl-2 family proteins and other cell cycle-associated proteins were performed to determine the molecular sequelae of HA14–1-induced apoptosis. The results show down-regulation of Mcl-1 but up-regulation of p27kip1, Bad, Bcl-xL, and Bcl-2 proteins, without change in Bax levels during HA14–1-mediated apoptosis. Our findings further elucidate the cellular mechanisms accompanying Bcl-2 inhibition and demonstrate the potential of Bcl-2 inhibitors as therapeutic agents for the treatment of non-Hodgkin lymphomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号